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Thus far, we have only discussed games where players knew about each other’s utility func-
tions. These games of complete information can be usefully viewed as rough approximations
in a limited number of cases. Generally, players may not possess full information about their
opponents. In particular, players may possess private information that others should take
into account when forming expectations about how a player would behave.

To analyze these interesting situations, we begin with a class of games of incomplete infor-
mation (i.e. games where at least one player is uncertain about another player’s payoff func-
tion) that are the analogue of the normal form games with complete information: Bayesian
games (static games of incomplete information). Although most interesting incomplete in-
formation games are dynamic (because these allow players to lie, signal, and learn about each
other), the static formulation allows us to focus on several modeling issues that will come
handy later.

The goods news is that you already know how to solve these games! Why? Because you
know how to solve games of imperfect information. As we shall see, Harsanyi showed how
we can transform games of incomplete information into ones of imperfect information, and
so we can make heavy use of our perfect Bayesian equilibrium.

Before studying dynamic (extensive form) games of incomplete information, let’s take a
look at static (normal form) ones.

1 Static Bayesian Games

1.1 Building a Plant

Consider the following simple example. There are two firms in some industry: an incumbent
(player 1) and a potential entrant (player 2). Player 1 decides whether to build a plant, and
simultaneously player 2 decides whether to enter. Suppose that player 2 is uncertain whether
player 1’s building cost is 1.5 or 0, while player 1 knows his own cost. The payoffs are shown
in Fig. 1 (p. 2).

Enter Don’t
Build 0,−1 2,0
Don’t 2,1 3,0

Enter Don’t
Build 1.5,−1 3.5,0
Don’t 2,1 3,0

high-cost low-cost

Figure 1: The Two Firm Game.

Player 2’s payoff depends on whether player 1 builds or not (but is not directly influenced
by player 1’s cost). Entering for player 2 is profitable only if player 1 does not build. Note
that “don’t build” is a dominant strategy for player 1 when his cost is high. However, player
1’s optimal strategy when his cost is low depends on his prediction about whether player 2
will enter. Denote the probability that player 2 enters with y . Building is better than not
building if

1.5y + 3.5(1−y) ≥ 2y + 3(1−y)
y ≤ 1/2.

In other words, a low-cost player 1 will prefer to build if the probability that player 2 enters is
less than 1/2. Thus, player 1 has to predict player 2’s action in order to choose his own action,
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while player 2, in turn, has to take into account the fact that player 1 will be conditioning his
action on these expectations.

For a long time, game theory was stuck because people could not figure out a way to solve
such games. However, in a couple of papers in 1967-68, John C. Harsanyi proposed a method
that allowed one to transform the game of incomplete information into a game of imperfect
information, which could then be analyzed with standard techniques. Briefly, the Harsanyi
transformation involves introducing a prior move by Nature that determines player 1’s “type”
(in our example, his cost), transforming player 2’s incomplete information about player 1’s
cost into imperfect information about the move by Nature.

Letting p denote the prior probability of player 1’s cost being high, Fig. 2 (p. 3) depicts the
Harsanyi transformation of the original game into one of imperfect information.

Low-Cost
[1− p]

High-Cost
[p]

Nature

Don’tBuild
1

D

2,0

E

0,−1

D

3,0

E

2,1

don’tbuild
1

D

3.5,0

E

1.5,−1

D

3,0

E

2,1

2

Figure 2: The Harsanyi-Transformed Game from Fig. 1 (p. 2).

Nature moves first and chooses player 1’s “type”: with probability p the type is “high-
cost” and with probability 1 − p, the type is “low-cost.” It is standard to assume that both
players have the same prior beliefs about the probability distribution on nature’s moves.
Player 1 observes his own type (i.e. he learns what the move by Nature is) but player 2 does
not. Observe now that after player 1 learns his type, he has private information: all player
2 knows is that probability of him being of one type or another. It is quite important to
note that here player 2’s beliefs are common knowledge. That is, player 1 knows what she
believes his type to be, and she knows that he knows, and so on. This is important because
player 1 will be optimizing given what he thinks player 2 will do, and her behavior depends
on these beliefs. We can now apply the Nash equilibrium solution concept to this new game.
Harsanyi’s Bayesian Nash Equilibrium (or simply Bayesian Equilibrium) is precisely the Nash
equilibrium of this imperfect-information representation of the game.

Before defining all these things formally, let’s skip ahead and actually solve the game in
Fig. 2 (p. 3). Player 2 has one (big) information set, so her strategy will only have one com-
ponent: what to do at this information set. Note now that player 1 has two information sets,
so his strategy must specify what to do if his type is high-cost and what to do if his type is
low-cost. One might wonder why player 1’s strategy has to specify what to do in both cases,
after all, once player 1 learns his type, he does not care what he would have done if he is of
another type.

The reason the strategy has to specify actions for both types is roughly analogous for the
reason the strategy has to specify a complete plan for action in extensive-form games with
complete information: player 1’s optimal action depends on what player 2 will do, which in
turn depends on what player 1 would have done at information sets even if these are never
reached in equilibrium. Here, player 1 knows his cost which is, say, low. So why should he
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bother formulating a strategy for the (non-existent) case where his cost is high? The answer
is that to decide what is optimal for him, he has to predict what player 2 will do. However,
player 2 does not know his cost, so she will be optimizing on the basis of her expectations
about what a high-cost player 1 would optimally do and what a low-cost player 1 would
optimally do. In other words, the strategy of the high-cost player 1 really represents player
2’s expectations.

The Bayesian Nash equilibrium will be a triple of strategies: one for player 1 of the high-
cost type, another for player 1 of the low-cost type, and one for player 2. In equilibrium, no
deviation should be profitable.

1.1.1 Solution: The Strategic Form

Let’s write down the strategic form representation of the game in Fig. 2 (p. 3). Player 1’s pure
strategies are S1 = {Bb, Bd,Db,Dd}, where the first component of each pair tells his what
to do if he is the high-cost type, and the second component if he is the low-cost type. Player
2 has only two pure strategies, S2 = {E,D}. The resulting payoff matrix is shown in Fig. 3
(p. 4).

Player 1

Player 2
E D

Bb 1.5− 1.5p,−1 3.5− 1.5p,0
Bd 2− 2p,1 3−p,0
Db 1.5+ 0.5p,2p − 1 3.5− 0.5p,0
Dd 2,1 3,0

Figure 3: The Strategic Form of the Game in Fig. 2 (p. 3).

Db strictly dominates Bb and Dd strictly dominates Bd. Eliminating the two strictly dom-
inated strategies reduces the game to the one shown in Fig. 4 (p. 4).

Player 1

Player 2
E D

Db 1.5+ 0.5p,2p − 1 3.5− 0.5p,0
Dd 2,1 3,0

Figure 4: The Reduced Strategic Form of the Game in Fig. 2 (p. 3).

If player 2 chooses E, then player 1’s unique best response is to choose Dd regardless of
the value of p < 1. Hence 〈Dd,E〉 is a Nash equilibrium for all values of p ∈ (0,1).

Note that E strictly dominates D whenever 2p− 1 > 0 ⇒ p > 1/2, and so player 2 will never
mix in equilibrium in this case. Let’s then consider the cases when p ≤ 1/2. We now also have
〈Db,D〉 as a Nash equilibrium. Suppose now that player 2 mixes in equilibrium. Since she is
willing to randomize,

U2(E) = U2(D)
σ1(Db)(2p − 1)+ (1− σ1(Db))(1) = 0

σ1(Db) = 1
2(1− p).
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Since player 1 must be willing to randomize as well, it follows that

U1(Db) = U1(Dd)
σ2(E)(1.5+ 0.5p)+ (1− σ2(E))(3.5− 0.5p) = 2σ2(E)+ 3(1− σ2(E))

σ2(E) = 1/2.

Hence, we have a mixed-strategy Nash equilibrium with σ1(Db) = 1/[2(1−p)], and σ2(E) =
1/2 whenever p ≤ 1/2.

If p = 1/2, then player 2 will be indifferent between her two pure strategies if player 1
chooses Db for sure, so she can randomize. Suppose she mixes in equilibrium. Then player
1’s expected payoff from Db would be σ2(E)(1.5+ 0.25)+ (1− σ2(E))(3.5− 0.25) = 3.25−
1.5σ2(E). Player 1’s expected payoff from Dd is then 2σ2(E) + 3(1 − σ2(E)) = 3 − σ2(E).
He would choose Db whenever 3.25 − 1.5σ2(E) ≥ 3 − σ2(E), that is, whenever σ2(E) ≤ 1/2.
Hence, there is a continuum of mixed strategy Nash equilibria when p = 1/2: Player 1 chooses
Db and player 2 randomizes with σ2(E) ≤ 1/2. However, since p = 1/2 is such a knife-edge
case, we would usually ignore it in the analysis.

Summarizing the results, we have the following Nash equilibria:

• Neither the high nor low cost types build, and player 2 enters;

• If p ≤ 1/2, there are two types of equilibria:

– the high-cost type does not build, but the low-cost type does, and player 2 enters;

– the high-cost type does not build, but the low-cost type builds with probability
1/[2(1− p)], and player 2 enters with probability 1/2.

• If p = 1/2, there is a continuum of equilibria: the high cost player 1 does not build, but
the low-cost does, and player 2 enters with probability less than 1/2.

Intuitively, the results make sense. The high-cost type never builds, so deterring player 2’s
entry can only be done by the low-cost type’s threat to build. If player 2 is expected to enter
for sure, then even the low-cost type would prefer not to build, which in turn rationalizes her
decision to enter with certainty. This result is independent of her prior beliefs.

1.1.2 Solution: Best Responses

Noting that the high-cost player 1 never builds, let x denote the probability that the low-cost
player 1 builds. As before, let y denote player 2’s probability of entry. The best-responses
for the low-cost player 1 and player 2 are

BR1(y|L) =

⎧⎪⎪⎨
⎪⎪⎩

1 if y < 1/2
[0,1] if y = 1/2
0 if y > 1/2

BR2(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x < x
[0,1] if x = x
0 if x > x

where x = 1
2(1− p).

To see how the best-responses were obtained, note that the low-cost player 1 strictly prefers
building to not building when the expected utility of building exceeds the expected utility of
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not building:

U1(B|L) ≥ U1(D|L)
1.5y + 3.5(1−y) ≥ 2y + 3(1−y)

y ≤ 1/2

Similarly, player 2 prefers to enter when the expected utility of doing so exceeds the expected
utility of not entering:

U2(E) ≥ U2(D)
pU2(E|H)+ (1− p)U2(E|L) ≥ pU2(D|H)+ (1− p)U2(D|L)
p(1)+ (1− p)(−x + 1− x) ≥ 0

1− 2x + 2px ≥ 0

x ≤ 1
2(1− p) ≡ x

Given these best-responses, the search for a Bayesian Nash Equilibrium boils down to finding
a pair (x,y), such that x is optimal for player 1 with low cost against player 2 and y is
optimal for player 2 against player 1 given beliefs p and player 1’s strategy (x for the low
cost and “don’t build” for the high cost).

For instance, (x = 0, y = 1) is an equilibrium for any p (here, player 1 does not build
regardless of type and player 2 enters). This is the first Nash equilibrium we found above.
Also, (x = 1, y = 0) is an equilibrium if 1 ≥ 1/[2(1−p)]⇒ p ≤ 1/2 (here, the low-cost player
1 builds, the high-cost player 1 does not, and player 2 does not enter). This is the other
pure-strategy equilibrium we found.

You should verify that the mixed-strategy Nash equilibria from the previous method can
also be recovered with this one. This yields the full set of equilibria.

1.2 Interim vs. Ex Ante Predictions

Suppose in the two-firm example player 2 also had private information and could be of two
types, “aggressive” and “accommodating.” If she must predict player 1’s type-contingent
strategies, she must be concerned with how an aggressive player 2 might think player 1
would play for each of the possible types for player 1 and also how an accommodating player
2 might think player 1 would play for each of his possible types. (Of course, player 1 must
also estimate both the aggressive and accommodating type’s beliefs about himself in order
to predict the distribution of strategies he should expect to face.)

This brings up the following important question: How should the different types of player 2
be viewed? On one hand, they can be viewed as a way of describing different information sets
of a single player 2 who makes a type-contingent decision at the ex ante stage. This is natural
in Harsanyi’s formulation, which implies that the move by Nature reveals some information
known only to player 2 which affects her payoffs. Player 2 makes a type-contingent plan
expecting to carry out one of the strategies after learning her type. On the other hand,
we can view the two types as two different “agents,” one of whom is selected by Nature to
“appear” when the game is played.

In the first case, the single ex ante player 2 predicts her opponent’s play at the ex ante stage,
so all types of player 2 would make the same prediction about the play of player 1. Under the
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second interpretation, the different “agents” would each make her prediction at the interim
stage after learning her type, and thus different “agents” can make different predictions.

It is worth emphasizing that in our setup, players plan their actions before they receive
their signals, and so we treat player 2 as a single ex ante player who makes type-contingent
plans. Both the aggressive and accommodating types will form the same beliefs about player
1. (For more on the different interpretations, see Fudenberg & Tirole, section 6.6.1.)

1.3 Bayesian Nash Equilibrium

A static game of imperfect information is called a Bayesian game, and it consists of the
following elements:

• a set of players, N = {1, . . . , n},
and, for each player i ∈ N,

• a set of actions, Ai, with the usual A = ×i∈NAi,
• a set of types, Θi, with the usual Θ = ×i∈NΘi,
• a probability function specifying i’s belief about the type of other players given his own

type, pi : Θi →
(Θ−i),
• a payoff function, ui : A×Θ → R.

Let’s explore these definitions. We want to represent the idea that each player knows his own
payoff function but may be uncertain about the other players’ payoff functions. Let θi ∈ Θi
be some type of player i (and so Θi is the set of all player i types). Each type corresponds to
a different payoff function that player i might have.

We specify the pure-strategy space Ai (with elements ai and mixed strategies αi ∈ Ai)
and the payoff function ui(a1, . . . , an|θ1, . . . , θn). Since each player’s choice of strategy can
depend on his type, we let si(θi) denote the pure strategy player i chooses when his type
is θi (σi(θi) is the mixed strategy). Note that in a Bayesian game, pure strategy spaces are
constructed from the type and action spaces: Player i’s set of possible (pure) strategies Si is
the set of all possible functions with domain Θi and range Ai. That is, Si is a collection of
functions si : Θi → Ai.

If player i has k possible payoff functions, then the type space has k elements, #(Θi) = k,
and we say that player i has k types. Given this terminology, saying that player i knows his
own payoff function is equivalent to saying that he knows his type. Similarly, saying that
player i may be uncertain about other players’ payoff functions is equivalent to saying that
he may be uncertain about their types, denoted by θ−i. We use Θ−i to denote the set of all
possible types of the other players and use the probability distribution pi(θ−i|θi) to denote
player i’s belief about the other players’ types θ−i, given his knowledge of his own type, θi.1

For simplicity, we shall assume that Θi has a finite number of elements.
If player i knew the strategies of the other players as a function of their type, that is, he

knew {σj(·)}j≠i, player i could use his beliefs pi(θ−i|θi) to compute the expected utility to
each choice and thus find his optimal response σi(θi).2

1In practice, the players’ types are usually assumed to be independent, in which case pi(θ−i|θi) does not
depend on θi, and so we can write the beliefs simply as pi(θ−i).

2This is where the assumption that Θi is finite is important. If there is a continuum of types, we may run
into measure-theoretic problems.
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Following Harsanyi, we shall assume that the timing of the static Bayesian game is as
follows: (1) Nature draws a type vector θ = (θ1, . . . , θn), where θi is drawn from the set of
possible types Θi using some objective distribution p that is common knowledge; (2) Nature
reveals θi to player i but not to any other player; (3) the players simultaneously choose
actions, player i chooses from the feasible set Ai; and then (4) payoffs ui(a1, . . . , an|θ) are
received.

Since we assumed in step (1) above that it is common knowledge that Nature draws the vec-
tor θ from the prior distribution p(θ), player i can use Bayes’ Rule to compute his posterior
belief pi(θ−i|θi) as follows:

pi(θ−i|θi) = p(θ−i, θi)
p(θi)

= p(θ−i, θi)∑
θ−i∈Θ−i p(θ−i, θi)

.

Furthermore, the other players can compute the various beliefs that player i might hold de-
pending on i’s type. We shall frequently assume that the players’ types are independent, in
which case pi(θ−i) does not depend on θi although it is still derived from the prior distribu-
tion p(θ).

Now that we have the formal description of a static Bayesian game, we want to define
the equilibrium concept for it. The notation is somewhat cumbersome but the intuition is
not: each player’s (type-contingent) strategy must be the best response to the other players’
strategies. That is, a Bayesian Nash equilibrium is simply a Nash equilibrium in a Bayesian
game.

Given a strategy profile s(·) and a strategy s′i(·) ∈ Si (recall that this is a type-contingent
strategy, with s′i ∈ Si, where Si is the collection of functions si : Θi → Ai), let (s′i(·), s−i(·))
denote the profile where player i plays s′i(·) and the other players follow s−i(·), and let(

s′i(θi), s−i(θ−i)
)
=
(
s1(θ1), . . . , si−1(θi−1), s′i(θi), si+1(θi+1), . . . , sN(θN)

)
denote the value of this profile at θ = (θi, θ−i).
Definition 1. Let G be a Bayesian game with a finite number of types Θi for each player i,
a prior distribution p, and strategy spaces Si. The profile s(·) is a (pure-strategy) Bayesian
equilibrium of G if, for each player i and every θi ∈ Θi,

si(θi) ∈ arg max
s′i∈Si

∑
θ−i
ui
(
s′i , s−i(θ−i)|θi, θ−i

)
p(θ−i|θi),

that is, no player wants to change his strategy, even if the change involves only one action by
one type.3

Simply stated, each type-contingent strategy is a best response to the type-contingent
strategies of the other players. Player i calculates the expected utility of playing every
possible type-contingent strategy si(θi) given his type θi. To do this, he sums over all
possible combinations of types for his opponents, θ−i, and for each combination, he cal-
culates the expected utility of playing against this particular set of opponents: The utility,
ui(s′i, s−i(θ−i)|θi, θ−i), is multiplied by the probability that this set of opponents θ−i is se-
lected by Nature: p(θ−i|θi). This yields the optimal behavior of player i when of type θi. We
then repeat the process for all possible θi ∈ Θi and all players.

3The general definition is a bit more complicated but we here have used the assumption that each type
has a positive probability, and so instead of maximizing the ex ante expected utility over all types, player i
maximizes his expected utility conditional on his type θi for each θi.
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Example 1. Consider a simple example. You are player 1 and you are playing with two
opponents, A, and B. Each of them has two types. Player A can be either t1

A with probability
pA or t2

A with probability 1−pA, and player be can be either t1
B with probability pB or t2

B with
probability 1− pB . Each of these types has two actions at his disposal. Player A can choose
either a1 or a2, and player B can chooses either b1 or b2. You can choose from actions c1, c2,
and c3 and you can be one of two types, θ1 or θ2.

We let player 1 be player i and use Definition 1. First define θ−i, the set of all possible
combination of opponent types. Since there are two opponents with two types each, there
are four combinations to consider:

Θ−1 =
{
(t1
A, t

1
B), (t

1
A, t

2
B), (t

2
A, t

1
B), (t

2
A, t

2
B)
}

Of course, Θ1 = {θ1, θ2}. For each θ1 ∈ Θ1, we have to define s1(θ1) as the strategy that
maximizes player 1’s payoff given what the opponents do when we consider all possible
combinations of opponents types, Θ−i.

Note that the probabilities associated with each type of opponent allow player 1 to calcu-
late the probability of a particular combination being realized. Thus we have the following
probabilities p(θ−1|θ1):

p(t1
A, t

1
B) = pApB p(t2

A, t
1
B) = (1− pA)pB

p(t1
A, t

2
B) = pA(1− pB) p(t2

A, t
2
B) = (1− pA)(1− pB)

where we suppressed the conditioning on θ1 because the realizations are independent from
player 1’s own type.

We now fix a strategy profile for the other two players to check player 1’s optimal strategy
for that profile. The players are using type-contingent strategies themselves. Given the
number of available actions, the possible (pure) strategies are sA(t1

A) = sA(t2
A) ∈ {a1, a2},

and sB(t1
B) = sB(t2

B) ∈ {b1, b2}. So, suppose we want to find player 1’s best strategy against
the profile where both types of player A choose the same action, sA(t1

A) = sA(t2
A) = a1, but

the two types of player B choose different actions, sB(t1
B) = b1, and sB(t2

B) = b2.
We have to calculate the summation over all θ−1, of which there are four. For each of these,

we calculate the probability of this combination of opponents occurring (we did this above)
and then multiply it by the payoff player 1 expects to get from his strategy if he is matched
with these particular types of opponents. This gives the expected payoff of player 1 from
following his strategy against opponents of the particular type. Once we add all the terms,
we have player 1’s expected payoff from his strategy.

So, suppose we want to calculate player 1’s expected payoff from playing s1(θ1) = c1:

u1

(
c1, sA(t1

A), sB(t
1
B)
)
p(t1

A, t
1
B)+u1

(
c1, sA(t1

A), sB(t
2
B)
)
p(t1

A, t
2
B)

+u1

(
c1, sA(t2

A), sB(t
1
B)
)
p(t2

A, t
1
B)+u1

(
c1, sA(t2

A), sB(t
2
B)
)
p(t2

A, t
2
B)

=u1 (c1, a1, b1)pApB +u1 (c1, a1, b2)pA(1− pB)
+u1 (c1, a1, b1) (1− pA)pB +u1 (c1, a1, b2)p(1− pA)(1− pB)

We would then do this for actions c2 and c3, and then pick the action that yields the highest
payoff from the three calculations. This is the arg max strategy. That is, it is the strategy that
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maximizes the expected utility.4 This yields type θ1 the best response to the strategy profile
specified above.

We shall have to find the optimal response to this strategy profile if player 1 is of type
θ2. We then have to find player A’s and player B’s optimal strategies given what they know
about the other players. Once all of these best responses are found, we can match them to
see which constitute profiles with strategies that are mutual best responses. That is, we then
proceed as before, when we found best responses and equilibria in normal form games.

Here’s an example with formal notation. Suppose there are two players, player 1 and player
2 and for each player there are two possible types. Player i’s possible types are θi and θ′i.
Furthermore, suppose that the types are independently distributed with the probability of θ1

being p and the probability of θ2 being q. For a given strategy profile (s∗1 , s
∗
2 ), the expected

payoff of player 1 of type θ1 is

qu1(s∗1 (θ1), s∗2 (θ2)|θ1, θ2)+ (1− q)u1(s∗1 (θ1), s∗2 (θ
′
2)|θ1, θ′2),

and for a given mixed strategy profile (σ∗1 , σ
∗
2 ), the expected payoff of player 1 of type θ1 is

q
∑
a∈A

σ∗1 (a1|θ1)σ∗2 (a2|θ2)u1(a1, a2|θ1, θ2)

+ (1− q)
∑
a∈A

σ∗1 (a1|θ1)σ∗2 (a2|θ′2)u1(a1, a2|θ1, θ′2).

A Bayesian equilibrium will consist of four type-contingent strategies, one for each type of
each player. Some equilibria may depend on particular values of p and q, and others may
not.

The existence of a Bayesian equilibrium is an immediate consequence of the existence of
Nash equilibrium.

1.4 The Battle of the Sexes

Consider the following modification of the Battle of the Sexes: player 1 is unsure about player
2’s payoff if they coordinate on going to the ballet, and player 2 is unsure about player 1’s
payoff if they coordinate on going to the fight. That is, the player 1’s payoff in the (F, F)
outcome is 2 + θ1, where θ1 is privately known to the man; and the woman’s payoff in the
(B, B) outcome is 2 + θ2, where θ2 is privately known to the woman. Assume that both θ1

and θ2 are independent draws from a uniform distribution [0, x].5

F B
F 2+ θ1,1 0,0
B 0,0 1,2+ θ2

Figure 5: Battle of the Sexes with Two-Sided Incomplete Information.

In terms of the formal description,

4Unlike the max of an expression which denotes the expression’s maximum when the expression is evalu-
ated, the arg max operator finds the parameter(s), for which the expression attains its maximum value. In our
case, the arg max simply instructs us to pick the strategy that yields the highest expected payoff when matched
against the profile of opponent’s strategies.

5The choice of the distribution is not important but we do have in mind that these privately known values
only slightly perturb the payoffs.
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• Players: N = {1,2}
• Actions: A1 = A2 = {F, B}
• Types: Θ1 = Θ2 = [0, x]
• Beliefs: p1(θ2) = p2(θ1) = 1/x (where we used the fact that the uniform probability

density function is f(x) = 1/x when specified for the interval [0, x])

• Payoffs: u1, u2 as described in Fig. 5 (p. 10).

Note that in this game, each player has a continuum of types, and so Θi is infinite. We shall
look for a Bayesian equilibrium in which player 1 goes to the fight if θ1 exceeds some critical
value x1 and goes to the ballet otherwise, and player 2 goes to the ballet if θ2 exceeds some
critical value x2 and goes to the fight otherwise. These strategies are usually called cut-point
strategies; that is, given an interval of types, there exists a special type (the cut-point) such
that all types to the left do one thing, and all types to the right do another.

Why are we looking for an equilibrium in such strategies? Because we can prove that any
equilibrium must, in fact, involve cut-point strategies. This follows from the fact that if
in equilibrium some type θ1 chooses F , then it must be the case that all θ̂1 must also be
choosing F . We can prove this by contradiction. Take some Bayesian equilibrium and some
θ1 whose optimal strategy is F . Now take some θ̂1 > θ1 and suppose that his optimal strategy
is B. We shall see that this leads to a contradiction. Since θ1 chooses F in equilibrium,

U1(F,σ∗2 |θ1) = (2+ θ1)σ∗2 (F) ≥ (1)(1− σ∗2 (F)) = U1(B,σ∗2 |θ1).

Furthermore, since θ̂1 chooses B in equilibrium, it follows that:

U1(B,σ∗2 |θ̂1) = (1)(1− σ∗2 (F)) ≥ (2+ θ̂1)σ∗2 (F) = U1(F,σ∗2 |θ̂1).

Putting these two inequalities together yields: (2+ θ1)σ∗2 (F) ≥ (2+ θ̂1)σ∗2 (F). If σ∗2 (F) = 0,
player 1’s best response is B regardless of type, which contradicts the supposition that θ1

chooses F . Therefore, it must be the case that σ∗2 (F) > 0. We can therefore simplify the above
inequality to obtain 2+θ1 ≥ 2+ θ̂1 ⇒ θ1 ≥ θ̂1. However, this contradicts θ̂1 > θ. We conclude
that if some type of player 1 chooses F in equilibrium, then so must all higher types. A
symmetric argument establishes that if some type of player 2 chooses B in equilibrium, then
so must all higher types. In other words, players must be using cut-point strategies in any
equilibrium.

Let’s now go back to solving the game. For simplicity (and with slight abuse of notation),
let σ1(θ1) denote the probability that player 1 goes to the fight, that is:

σ1(θ1) = Pr[θ1 > x1] = 1− Pr[θ1 ≤ x1] = 1− x1

x
.

Similarly, the probability that player 2 goes to the ballet is

σ2(θ2) = Pr[θ2 > x2] = 1− Pr[θ2 ≤ x2] = 1− x2

x
.

Suppose the players play the strategies just specified. We now want to find x1, x2 that make
these strategies a Bayesian equilibrium. Given player 2’s strategy, player 1’s expected payoffs
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from going to the fight and going to the ballet are:

E [u1(F|θ1, θ2)] = (2+ θ1)(1− σ2(θ2))+ (0)σ2(θ2) = x2

x
(2+ θ1)

E [u1(B|θ1, θ2)] = (0)(1− σ2(θ2))+ (1)σ2(θ2) = 1− x2

x

Going to the fight is optimal if and only if the expected utility of doing so exceeds the ex-
pected utility of going to the ballet:

E [u1(F|θ1, θ2)] ≥ E [u1(B|θ1, θ2)]
x2

x
(2+ θ1) ≥ 1− x2

x
θ1 ≥ x

x2
− 3.

Let x1 = x/x2 − 3 denote the critical value for player 1. Player 2’s expected payoffs from
going to the ballet and going to the fight given player 1’s strategy are:

E [u2(B|θ1, θ2)] = (0)σ1(θ1)+ (2+ θ2)(1− σ1(θ1)) = x1

x
(2+ θ2)

E [u2(F|θ1, θ2)] = (1)σ1(θ1)+ (0)(1− σ1(θ1)) = 1− x1

x

and so going to the ballet is optimal if and only if:

E [u2(B|θ1, θ2)] ≥ E [u2(F|θ1, θ2)]
x1

x
(2+ θ2) ≥ 1− x1

x
θ2 ≥ x

x1
− 3.

Let x2 = x/x1 − 3 denote the critical value for player 2. We now have the two critical values,
so we solve the following system of equations

x1 = x/x2 − 3

x2 = x/x1 − 3.

The solution is x1 = x2 and x2
2+3x2−x = 0. We now solve the quadratic, whose discriminant

is D = 9+ 4x, for x2. The critical values are:

x1 = x2 = −3+√9+ 4x
2

.

The Bayesian equilibrium is thus the pair of strategies:6

s1(θ1) =
⎧⎨
⎩F if θ1 > x1

B if θ1 ≤ x1
s2(θ2) =

⎧⎨
⎩F if θ2 ≤ x2

B if θ2 > x2

6There are other Bayesian equilibria in this game. For example, all types θ1 choose F (B) and all types θ2

choose F (B) are both Bayesian equilibria.
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where

x1 = x2 = −3+√9+ 4x
2

.

Note that the strategies do not specify what to do for θi = xi because the probability of this
occurring is 0 (the probability of any particular number drawn from a continuous distribution
is zero). It is customary that one of the inequalities, it does not matter which, is weak in order
to handle the case. By convention, it is ‘<’ that is specified as ‘≤’.

In the Bayesian equilibrium, the probability that player 1 goes to the fight equals the prob-
ability that player 2 goes to the ballet, and they are:

1− x1

x
= 1− x2

x
= 1− −3+√9+ 4x

2x
. (1)

It is interesting to see what happens as uncertainty disappears (i.e. x goes to 0). Taking the
limit of the expression in Equation 1 requires an application of the L’Hôpital rule:

lim
x→0

[
1− −3+√9+ 4x

2x

]
= 1− lim

x→0

⎡
⎣ d
dx (−3+√9+ 4x)

d
dx (2x)

⎤
⎦ = 1− lim

x→0

2(9+ 4x)−1/2

2
= 2

3

In other words, as uncertainty disappears, the probabilities of player 1 playing F and player
2 playing B both converge to 2/3. But these are exactly the probabilities of the mixed strat-
egy Nash equilibrium of the complete information case! That is, we have just shown that as
incomplete information disappears, the players’ behavior in the pure-strategy Bayesian equi-
librium of the incomplete-information game approaches their behavior in the mixed-strategy
Nash equilibrium in the original game of complete information.

Harsanyi (1973) suggested that player j’s mixed strategy represents player i’s uncertainty
about j’s choice of a pure strategy, and that player j’s choice in turn depends on a small
amount of private information. As we have just shown (and as can be proven for the general
case), a mixed-strategy Nash equilibrium can almost always be interpreted as a pure-strategy
Bayesian equilibrium in a closely related game with a little bit of incomplete information. The
crucial feature of a mixed-strategy Nash equilibrium is not that player j chooses a strategy
randomly, but rather that player i is uncertain about player j’s choice. This uncertainty
can arise either because of randomization or (more plausibly) because of a little incomplete
information, as in the example above. This is called purification of mixed strategies.

1.5 An Exceedingly Simple Game

Let’s start with a simple example (exercise 3.5 in Myerson, p. 149). Player 1 can be of type α
with probability .9 and type β with probability .1 (from player 2’s perspective). The payoff
matrices are in Fig. 6 (p. 13).

L R
U 2,2 −2,0
D 0,−2 0,0

L R
U 0,2 1,0
D 1,−2 2,0

t1 = α(.9) t1 = β(.1)
Figure 6: The Two Type Game.
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The easiest way to solve this is to construct the strategic form of the Bayesian game. The
expected payoffs are as follows:

• U1(U, L) = 2(.9)+ 0(.1) = 1.8 and U2(U, L) = 2(.9)+ 2(.1) = 2

• U1(U,R) = −2(.9)+ 1(.1) = −1.7 and U2(U,R) = 0

• U1(D, L) = 0(.9)+ 1(.1) = .1 and U2(D, L) = −2

• U1(D,R) = 0(.9)+ 2(.1) = .2 and U2(D,R) = 0

The resulting payoff matrix is shown in Fig. 7 (p. 14).

L R
U 1.8,2 −1.7,0
D .1,−2 .2,0

Figure 7: The Strategic Form of the Game from Fig. 6 (p. 13).

There are two Nash equilibria in pure strategies, 〈U,L〉 and 〈D,R〉, and a mixed strategy
equilibrium

〈
1/2[U], 19/36[L]

〉
. Note, in particular, that in two of these equilibria, player 2

chooses L with positive probability. If you look back at the original payoff matrices in Fig. 6
(p. 13), this result may surprise you because 〈D,R〉 is a Nash equilibrium in the separate
games against both types of player 1. In fact, it is the unique equilibrium when t1 = β. On
the other hand, the result is perhaps not surprising because 〈U,L〉 is obviously focal in the
sense that it is best for both players. However, if we relax the common knowledge assump-
tion (about the probabilities associated with player 1’s type), then there will be no Bayesian
equilibrium where player 2 would choose L! (This is a variant of Rubinstein’s electronic mail
game.)

1.6 The Lover-Hater Game

Suppose that player 2 has complete information and two types, L and H. Type L loves going
out with player 1 whereas type H hates it. Player 1 has only one type and is uncertain about
player 2’s type and believes the two types are equally likely. We can describe this formally as
a Bayesian game:

• Players: N = {1,2}
• Actions: A1 = A2 = {F, B}
• Types: Θ1 = {x}, Θ2 = {l, h}
• Beliefs: p1(l|x) = p1(h|x) = 1/2, p2(x|l) = p2(x|h) = 1

• Payoffs: u1, u2 as described in Fig. 8 (p. 15).

We shall solve this game using two different methods.
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F B
F 2,1 0,0
B 0,0 1,2

f b
F 2,0 0,2
B 0,1 1,0

type L type H

Figure 8: The Lover-Hater Battle of the Sexes.

1.6.1 Solution: Conversion to Strategic Form

We can easily convert this to strategic form, as shown in Fig. 9 (p. 15). It is immediately clear
that Bb strictly dominates Ff for player 2, so she will never use the latter in any equilibrium.
Finding the PSNE is easy by inspection: 〈F, Fb〉. We now look for MSNE. Observe that player
2 will always play Bb with positive probability in every MSNE. To see this, suppose that there
exists some MSNE, in which σ2(Bb) = 0. But if she does not play Bb, then F strictly dominates
B for player 1, so he will choose F , to which player 2’s best response is Fb. That is, we are
back in the PSNE 〈F, Fb〉, and there’s no mixing.

Player 1

Player 2
Ff Fb Bf Bb

F 2, 1/2 1, 3/2 1,0 0,1
B 0, 1/2 1/2,0 1/2, 3/2 1,1

Figure 9: The Lover-Hater Game in Strategic Form.

We conclude that in any MSNE, σ2(Bb) > 0. We now have three possibilities to consider,
depending on which of the remaining two pure strategies she includes in the support of
her equilibrium strategy. Let p denote the probability that player 1 chooses F , and use the
shortcuts q1 = σ2(Fb), q2 = σ2(Bf), and q3 = σ2(Bb). We now examine each possibility
separately:

• Suppose q1 = 0 and q2 > 0, which implies q3 = 1− q2. Since player 2 is willing to mix
between Bf and Bb, her expected payoffs from these pure strategies must be equal.
Since U2(p, Bb) = 1 and U2(p, Bf) = 3/2(1− p), this implies 1 = 3(1− p)/2 ⇒ p = 1/3.
That is, player 1 must be willing to mix too. This means the payoffs from his pure
strategies must be equal. Since U1(F, q2) = q2 and U1(B, q2) = 1/2q2 + 1(1 − q2), this
implies q2 = 1/2q2 + 1 − q2 ⇒ q2 = 2/3. We only need to check that q1 = 0 is rational,
which will be the case if U2(p, Fb) ≤ U2(Bb). Since U2(p, Fb) = 3/2p = 1/2 and U2(Bb) =
1, this inequality holds. Therefore, we do have a MSNE:

〈
p = 1/3,

(
q2 = 2/3, q3 = 1/3

)〉
. In

this MSNE, player 1 chooses F with probability 1/3 and player 2 mixes between Bf and
Bb; that is, she chooses B if she is the L type, and chooses f with probability 2/3 if she
is the H type.

• Suppose q1 > 0 and q2 = 0, which implies q3 = 1− q1. Since player 2 is willing to mix,
it follows that U2(p, Fb) = 3/2p = 1 = U2(p, Bb). This implies p = 2/3, so player 1 must
be mixing too. For him to be willing to do so, it must be the case that his payoffs from
the pure strategies are equal. Since U1(F, q2) = q1 and U1(B, q2) = 1/2q1 + 1(1 − q1),
this implies q1 = 2/3. We only need to check if player 2 would be willing to leave out Bf .
Since U2(p, Bf) = 3/2p = 1 = U2(p, Bb), including that strategy will not improve her
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expected payoff. Therefore, we do have another MSNE:
〈
p = 2/3,

(
q1 = 2/3, q3 = 1/3

)〉
. In

this MSNE, player 1 chooses F with probability 2/3 and player 2 mixes between Fb and
Bb; that is, she chooses F with probability 1/3 if she is the L type, and chooses b if she
is the H type.

• Suppose q1 > 0 and q2 > 0. Since player 2 is willing to mix, it follows that U2(p, Fb) =
U2(p, Bf) = U2(p, Bb) = 1. Since U2(p, Fb) = 3/2p = U2(p, Bf) = 3/2(1− p), it follows
that p = 1/2. However, from U2(p, Bf) = U2(p, Bb) we obtain 3/2(1 − 1/2) = 3/4 < 1 =
U2(p, Bb), a contradiction. Therefore there is no such MSNE.

We conclude that this game has three equilibria, one in pure strategies and the others in
mixed. Obviously, the other solution method would have to replicate this result.

1.6.2 Solution: Best Responses

Since player 1 has only one type, we suppress all references to his type from now on. Let’s
begin by analyzing player 2’s optimal behavior for each of the two types. Let p denote the
probability that player 1 chooses F , q1 denote the probability that the L type chooses F , and
q2 denote the probability that the H type chooses f . Observe that q1 and q2 do not mean the
same thing they did in the previous method (where they designated probabilities for pure
strategies). In other words, in the strategic-form method, these were elements of a mixed
strategy. Here, they are elements of a behavioral strategy.

Let’s derive the best response for player 2. If she’s type L, the expected utility from playing
F is UL(p, F) = p, while the expected utility from playing B is UL(p, B) = 2(1−p). Therefore,
she will choose F whenever p ≥ 2(1− p)⇒ p ≥ 2/3. This yields the best response:

BRL(p) =

⎧⎪⎪⎨
⎪⎪⎩
q1 = 1 if p > 2/3
q1 ∈ [0,1] if p = 2/3
q1 = 0 if p < 2/3

If she is of type H, the expected payoffs are UH(p, F) = 1− p and UH(p, B) = 2p. Therefore,
she will choose F whenever 1− p ≥ 2p ⇒ p ≤ 1/3. This yields the best response:

BRH(p) =

⎧⎪⎪⎨
⎪⎪⎩
q2 = 1 if p < 1/3
q2 ∈ [0,1] if p = 1/3
q2 = 0 if p > 1/3

Finally, we compute the expected payoffs for player 1:

U1(F, q1q2) = 1/2
[
2q1 + 0(1− q1)

]+ 1/2
[
2q2 + 0(1− q2)

] = q1 + q2

U1(B, q1q2) = 1/2
[
0q1 + 1(1− q1)

]+ 1/2
[
0q2 + 1(1− q2)

] = 1− (q1 + q2)/2.

Hence, choosing F is optimal whenever q1 + q2 ≥ 1− (q1 + q2)/2⇒ q1 + q2 ≥ 2/3. This yields
player 1’s best response:

BR1(q1q2) =

⎧⎪⎪⎨
⎪⎪⎩
p = 1 if q1 + q2 > 2/3
p ∈ [0,1] if q1 + q2 = 2/3
p = 0 if q1 + q2 < 2/3
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We now must find a triple (p, q1, q2) such that player 1’s strategy is a best response to the
strategies of both types of player 2 and each type of player 2’s strategy is a best response to
player 1’s strategy. Let’s check for various types of equilibria.

Can it be the case that player 1 uses a pure strategy in equilibrium? There are two cases to
consider. Suppose p = 0, which implies q1 + q2 < 2/3 from BR1. We now obtain q1 = 0 from
BRL and q2 = 1 from BRH , which means q1 + q2 = 1, a contradiction. Hence, there is no such
equilibrium.

Suppose now p = 1, which implies q1+q2 > 2/3. We now obtain q1 = 1 from BRL and q2 = 0
from BRH , which means q1 + q2 = 1. This satisfies the requirement for player 1’s strategy to
be a best response. Therefore, we obtain a pure-strategy Bayesian equilibrium: 〈F, Fb〉.

In all remaining solutions, player 1 must mix in equilibrium. Since he is willing to mix,
BR1 implies that q1 + q2 = 2/3 (otherwise he’d play a pure strategy). This immediately means
that it cannot be the case that player 2 chooses the fight, whatever her type may be. To see
this, note that if some type goes to the fight for sure, q1 + q2 ≥ 1, which will contradict the
requirement that allows player 1 to mix. Therefore, q1 < 1 and q2 < 1. It also cannot be
the case that neither type goes to the fight because that would imply q1 + q2 = 0, which also
cannot be true in a MSNE. Therefore, either q1 > 0, or q2 > 0, or both. Let’s consider each
separately:

• Suppose q1 = 0 and q2 > 0: since H is willing to mix, BRH implies that p = 1/3 and
since q1 = 0, BRL implies p < 2/3. Therefore, p = 1/3 will make these strategies best
responses. To get player 1 to mix, it has to be the case that q2 = 2/3. This yields the
following MSNE:

〈
p = 1/3,

(
q1 = 0, q2 = 2/3

)〉
. In this equilibrium, player 1 chooses F

with probability 1/3, player 2 picks B if she’s the L type and picks f with probability 2/3
if she is the H type.

• Suppose q1 > 0 and q2 = 0: since L is willing to mix, BRL implies that p = 2/3 and
since q2 = 0, BRH implies that p > 1/3. Therefore, p = 2/3 will make these strategies
best responses. To get player 1 to mix, it has to be the case that q1 = 2/3. This yields
another MSNE:

〈
p = 2/3,

(
q1 = 2/3, q2 = 0

)〉
. In this equilibrium, player 1 chooses F with

probability 2/3, player 2 picks F with probability 2/3 if she’s the L type and picks b if she
is the H type.

• Suppose q1 > 0 and q2 > 0: since L is willing to mix, BRL implies that p = 2/3 but since
H is also willing to mix, BRH implies that p = 1/3, a contradiction. Therefore, there is
no such MSNE.

This exhausts the possibilities, and voilà! We conclude that the game has three equilibria,
one in pure strategies and two in mixed strategies. Clearly, these solutions are the same we
found with the other method.

1.7 The Market for Lemons

If you have bought or sold a used car, you know something about markets with asymmetric
information. Typically, the seller knows far more about the car he is offering than the buyer.7

7For example, I once sold in Texas an old 1989 Firebird knowing full well that the engine tended to overheat
if run at highway speeds (e.g. 85-90 mph) for over 20 minutes. I was so busy selling it, I forgot to mention this
little detail to the buyer. Once I had the money, I left the state.
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Generally, buyers face a significant informational disadvantage. As a result, you might expect
that buyers will tend not to do very well in the market, making them cautious and loath to
buy used cars, in turn making sellers worse off when the market fails due to lack of demand.

Let’s model this! Suppose you, the buyer, are in the market for a used car. You meet me,
the seller, through an add in the Penny Pincher (never a good place to look for a good car
deal), and I offer you an attractive 15-year old Firebird for sale. You love the car, it has big
fat tires, it peels rubber when you hit the gas, and it’s souped up with a powerful 6-cylinder
engine. It also sounds cool and has a red light in the interior. You take a couple of rides
around the block and it handles like a dream.

Then you suddenly have visions of the souped up engine exploding and blowing you up
to smithereens, or perhaps a tire getting loose just as you screech around that particularly
dangerous turn on US-1. In any case, watching the fire-fighters dowse your vehicle while you
cry at the curb or watching said fire-fighters scrape you and your car off the rocks, is not
likely to be especially amusing. So you tell me, “The car looks great, but how do I know it’s
not a lemon?”

I, being completely truthful and honest as far as used car dealers can be, naturally respond
with “Oh! I’ve taken such good care of it. Here’re are all the receipts from the regular oil
changes. See? No receipts for repairs to the engine because I have never had problems with
it! It’s a peach, trust me.”

You have, of course, taken my own course on repeated games and so say, “A-ha! But you
will not deal with me in the future again after the sale is complete, and so you have no interest
in cooperating today because I cannot punish you tomorrow for not cooperating today! You
will say whatever you think will get me to buy the car.”

I sigh (Blasted game theory! It was so much easier to cheat people before.) and tell you,
“Fair enough. The Blue Book value of the car is v > 0 dollars. Take a look at the car, take a
couple of more rides around the block if you wish and then decide whether you are willing
to pay the Blue Book price and I will decide whether to offer you the car at that price.”

We shall assume that if a car is peach, it is worth B (you, the buyer) $3,000 and worth S
(me, the seller) $2,000. If it is a lemon, then it is worth $1,000 to B and $0 to S. In each
case, your valuation is higher than mine, so under complete information trade should occur
with the surplus of $1,000 divided between us. However, there is asymmetric information.
I know the car’s condition, while you only estimate that the likelihood of it being a peach
is r ∈ (0,1). Each of us has two actions, to trade or not trade at the market price v > 0.
The market price is v < 3, so a trade is, in principle, possible. (If the price were higher,
the buyer would not be willing to purchase the peach even if he knew for sure that it was
a peach.) We simultaneously announce what we are going to do. If we both elect to trade,
then the trade takes place. Otherwise, I keep the car and you go home to deplore the evils
of simultaneous-moves games. The situation is depicted in Fig. 10 (p. 18) with rows for the
buyer and columns for the seller (payoffs in thousands).

B

S
T N

T 3− v,v 0,2
N 0,2 0,2

B

S
t n

T 1− v,v 0,0
N 0,0 0,0

peach (r ) lemon (1− r )

Figure 10: The Market for Lemons.

18



As before, let’s derive the best responses. Here S can be thought of as having two types,
L if his car is a lemon, and P if his car is a peach. Fix an arbitrary strategy for the buyer,
let p denote the probability that he elects to trade, and calculate seller’s best responses
(the probability that he will choose trade) as a function of this strategy. Let q1 denote the
probability that a seller with a peach trades and q2 denote the probability that a seller with a
lemon trades.

The seller with a peach will get UP(p, T) = pv + 2(1 − p) if she trades and UP(p,N) = 2
if she does not trade. Therefore, she will trade whenever pv + 2(1− p) ≥ 2 ⇒ p(v − 2) ≥ 0.
This yields her best response:

BRP (p) =

⎧⎪⎪⎨
⎪⎪⎩
q1 = 1 if p > 0 and v > 2

q1 ∈ [0,1] if p = 0 or v = 2

q1 = 0 if p > 0 and v < 2

The seller with a lemon will get UL(p, t) = pv if she trades, and U2(p,n) = 0 if she does not
trade. Therefore, she will trade whenever pv ≥ 0. Since v > 0, this yields her best response:

BRL(p) =
⎧⎨
⎩q2 = 1 if p > 0

q2 ∈ [0,1] if p = 0

Observe, in particular, that for any p > 0 (that is, whenever the buyer is willing to trade with
positive probability), she always puts the lemon on the market. Turning now to the buyer, we
see that his expected payoff from trading is:

UB(T , q1q2) = (3− v)rq1 + (1− v)(1− r)q2.

Since his expected payoff from not trading is UB(N,q1q2) = 0, he will trade whenever (3 −
v)rq1 + (1− v)(1− r)q2 ≥ 0. Letting R = r/(1− r) > 0, this yields R(3− v)q1 ≥ (v − 1)q2.
Hence, the best response is:

BRB(q1q2) =

⎧⎪⎪⎨
⎪⎪⎩
p = 1 if R(3− v)q1 > (v − 1)q2

p ∈ [0,1] if R(3− v)q1 = (v − 1)q2

p = 0 if R(3− v)q1 < (v − 1)q2

As before, we must find a profile (p, q1, q2), along with some possible restrictions on r , such
that the buyer strategy is a best-response to the strategies of the two types of sellers, and each
seller type’s strategy is a best response to the buyer’s strategy. We shall look for equilibria
where trade occurs with positive probability, that is where p > 0.8 This immediately means
that the seller with the lemon always trades in equilibrium, so q2 = 1. Observe further that
for the seller of the peach to mix in a trading equilibrium, v = 2 is necessary. This is a
knife-edge condition on the Blue Book price and the solution is not interesting because it will
not hold for any v slightly different from 2. Therefore, we shall suppose that v ≠ 2. This
immediately means that we only have two cases to consider, both in pure strategies: the
seller with the peach either trades or does not.

Suppose q1 = 0, so the seller with the peach never trades. Since p > 0, this implies that
v < 2. Looking at the condition in BRB(01), we see that the best response is p = 0 if v > 1

8There is an equilibrium where B buys with probability 0 and both types of S sell with probability 0, but it
is not terribly interesting because it relies on knife-edge indifference conditions.
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and p = 1 if v < 1. Since we are looking for a trade equilibrium, we conclude that if v ≤ 1,
there exists an equilibrium in which only the lemon is brought to the market; the seller with
the peach stays out and the buyer obtains the lemon at the low price v < 1. The PSNE is
〈T ,Nt〉.

Suppose now q1 = 1, so both peaches and lemons are traded. Since the P type is willing
to trade, this means v > 2. In other words, a necessary condition for the existence of this
equilibrium is that the Blue Book price of the car exceeds the seller’s valuation of the peach.
(If it did not, he would never trade at that price.) Looking now at BRB(11), we find that p = 1
whenever R(3 − v) > v − 1, which is satisfied whenever R > (v − 1)/(3 − v) = x ⇒ r >
x/(1+ x), or:

r >
v − 1

2
>

1
2
,

where the second inequality follows from v > 2. If this is satisfied, then the PSNE is 〈T , Tt〉.
In other words, this equilibrium exists only if the prior probability of the car being a peach is
sufficiently high.

We conclude that if the Blue Book price is too low (v < 1), then in equilibrium only the
lemon is traded. If, on the other hand, the price is sufficiently high (v > 2), then in equi-
librium both the lemon and the peach are traded provided the buyer is reasonably confident
that the car is a peach (r > 1/2). If the price is intermediate, 1 < v < 2, then no trade will
occur in equilibrium.9

The results are not very encouraging for the buyer: It is not possible to obtain an equilib-
rium where only peaches are traded and lemons are not. Whenever trade occurs, either both
types of cars are sold, or only the lemon is sold. Furthermore, if r < 1/2, then only lemons
are traded in equilibrium. Thus, with asymmetric information markets can sometimes fail.

2 Dynamic Bayesian Games

When analyzing Bayesian games, it will be convenient to label equilibria with respect to the
behavior of informed types. For example, if all types take the same action, we say that
they are pooling on that action. If they do so in equilibrium, we shall call this a pooling
equilibrium. If each type takes a different action, their behavior is separating, and we shall
call any equilibrium in which that happens a separating equilibrium. Finally, if some types
pool and others separate, we shall call the equilibrium a semi-separating equilibrium.10

For instance, in the Lover-Hater Game, the PSNE is 〈F, Fb〉, and it is separating because
player 2 chooses F is she is of type L and b if she is of type H. Analogously, in the Market for
Lemons game, the PSNE 〈T ,Nt〉 is separating because the seller trades if her car is a lemon
and does not trade if her car is a peach. The Market for Lemons Game’s other trading PSNE

9To see this, observe that v < 2 implies q1 = 0 because the seller of the peach will not bring it to the market.
But then R(3− v)q1 = 0 < (v − 1)q1 for any value of q1 > 0 because v > 1. Therefore, p = 0, and the buyer
is not willing to trade. We can actually find equilibria with p = 0 and q1 > 0 and q2 > 0 as well. To see this,
note that if the buyer is sure not to trade, both types of sellers can mix with v < 2. Hence, any pair (q1, q2)
that satisfies R(3− v)q1 < (v − 1)q2 will actually work. Obviously, it will have to be the case that q1 < q2 for
this to work; that is, the seller of the peach is less likely to trade than the seller of the lemon. None of these
equilibria are particularly illuminating beyond the fact that no trade occurs in any of them.

10Also sometimes called partially separating or partially pooling. Some authors also distinguish hybrid strate-
gies, where some types play pure strategies, and other types play mixed strategies. This, of course, results in
players sometimes separating and sometimes pooling in equilibrium. Hence, our old terminology that called
such equilibria semi-separating. When there are more than two types, it may be useful to be a bit more precise.
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is 〈T , Tt〉, and it is a pooling equilibrium because the seller always trades regardless of the
quality of her car. There is no pooling equilibrium in the Lover-Hater Game. Finally, the Lover-
Hater Game’s two MSNE are semi-separating: in one of them, player 2 picks B regardless of
type but mixes if she is type H, and in the other she picks b regardless of type but mixes if
she is type L. In the first case, if player 1 could observe the choice, he would conclude that
player 2 is type H if she had chosen F because that’s the only type who plays this action
with positive probability. On the other hand, he would remain uncertain about her type if the
action was B because both types play this with positive probability. However, by Bayes’ rule,
his posterior belief of her being type L will increase to:

Pr(L|B) = Pr(B|L)Pr(L)
Pr(B|L)Pr(L)+ Pr(B|H)Pr(H)

= (1)(1/2)
(1)(1/2)+ (1/3)(1/2)

= 3
4
.

As we would intuitively expect, the estimate of her being type L has increased from the pre-
play probability of 1/2. The equilibrium is semi-separating because observation of F does
separate the types completely (only H takes it) whereas observation of B separates them only
to some extent (though there is still information being transmitted, so it’s not pooling).

We introduce these labels for convenience: sometimes it is just a lot easier to organize
your solutions under the three rubrics. It can also help when searching for equilibria: if you
exhaust all the possibilities within the three types, you can be sure that you are not missing
any solutions. Among the most frequently studied games are the signaling games, in which
an informed player gets to move first (perhaps signaling some of the information he has) and
the uninformed player gets to move second, making use of the information revealed from
the first stage.11

2.1 A Two-Period Reputation Game

There are two firms, (i = 1,2) and in period 1 both are in the market but only firm 1 takes an
action a1 from the action space {Prey, Accommodate}. Firm 2 has profit D2 if firm 1 accom-
modates and P2 < 0 < D2 if firm 1 preys. Firm 1 can be of two types, “sane” which makes D1

when he accommodates and P1 < D1 when he preys, but which prefers to be a monopolist
with profit M1 > D1 per period; and “crazy” which prefers predation to everything else (for
simplicity, we assume he gets P̂1 > M1). Let p be the probability that film 1 is sane.

In period 2, only firm 2 chooses an action a2 from the action space {Stay, Exit}. If firm 2
stays, she obtains D2 if firm 1 is actually sane and P2 if firm 1 is actually crazy; if firm 2 exits,
she obtains a payoff of 0. The sane firm gets D1 if firm 2 stays, and M1 if firm 2 exits. Let δ
denote the (common) discount factor between the two periods.

Let q1 denote firm 2’s updated belief that firm 1 is sane if he preys in the first period, and
q2 denote the updated belief that firm 1 is sane if he accommodates in the first period. The
extensive form game is illustrated in Fig. 11 (p. 22).

Since we assumed that the crazy type always preys, it is interesting to study the behavior
of the sane type. The idea is that although he prefers to accommodate in any period if that
period is played by itself, he might want to prey in the first period if doing so would induce
firm 2 to exit in the second period. That is, can the sane firm 1 behave predatorily to build

11In contrast, screening games are those where the uninformed player moves first and takes an action that
is designed to screen his opponent’s type by causing certain types to take one action, and different types to
take another. Generally, screening games are much easier to analyze than signaling games. There are also
interesting models where both screening and signaling take place (one such model of wartime negotiations is
analyzed by yours truly).
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Figure 11: The Reputation Game.

reputation for a crazy one and increase his payoff in the second period? We study potential
equilibria by their classification:

• Pooling Equilibria. There is no equilibrium in which both types of firm 1 accommodate
because we assumed that the crazy type always preys. Hence, the only pooling PBE
involves both types preying. In this case, firm 2 cannot infer any new information if
she observes predation, so q1 = p. However, she can infer that firm 1 is sane if she
observes accommodation, so q2 = 1. This now implies that firm 2 will always stay if she
sees accommodation because (1+δ)D2 > D2. What would she do if she sees predation?
Her expected payoff from staying is U2(S|P) = q1(P2+δD2)+ (1−q1)(P2+δP2). If she
exits her payoff is just U2(E|P) = q1P2 + (1 − q1)P2 = P2. Since the only reason a sane
firm would prey is to get firm 2 to exit, we have to find the condition that ensures that
firm 2 will, in fact, exit upon seeing predation. Therefore, noting that q2 = p here, she
will exit after predation if U2(E|P) ≥ U2(S|P), or if:

pD2 + (1− p)P2 ≤ 0 (2)

That is, if condition (2) is met, then firm 2 prefers to exit after predation. If she exits,
the sane firm 1’s payoff is U1(P) = P1 + δM1. Since player 2 stays for sure when she
sees accommodation, if the sane firm 1 accommodates, his payoff is U1(A) = (1+δ)D1.
Hence, the sane firm 1 will prefer to prey in the first period if P1+δM1 ≥ (1+δ)D1, or:

δ(M1 −D1) ≥ D1 − P1 (3)

Therefore, when conditions (2) and (3) are satisfied, the pooling PBE exists: firm 1 preys
in the first period regardless of type, firm 2 exists if she sees predation and stays if she
sees accommodation.12

12If condition (2) is satisfied with equality, then firm 2 is indifferent between staying and exiting. Let r
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• Separating Equilibria. In a separating equilibrium, the sane firm accommodates and
the crazy firm preys. Firm 2’s updated beliefs are q1 = 0 and q2 = 1, and so she
has complete information in the second period. Firm 2’s best response is to stay after
accommodation and exit after predation. The sane firm’s payoff from accommodating
then is (1 + δ)D1 and the payoff from preying is P1 + δM1 given firm 2’s strategy. The
sane firm will prefer to maintain separation and accommodate if (1+δ)D1 ≥ P1+δM1,
or:

D1 − P1 ≥ δ(M1 −D1) (4)

This condition is, of course, the reverse of (3), which ensured that it would prefer to
pool. We conclude that if (4) is satisfied, then the sane firm accommodates, the crazy
one preys, firm 2 updates to believe as described, exits if she observes predation, and
stays if she observes accommodation in the first period. This is the separating PBE, and
condition (4) is both necessary and sufficient for its existence.

• Semi-separating Equilibria. In a semi-separating equilibrium, the sane type randomizes
and the crazy type preys. Let r denote the probability that the sane type preys and s
denote the probability that firm 2 exits after predation. The sane type’s payoff from
preying is U1(P) = s(P1+δM1)+(1−s)(P1+δD1) = P1+δD1+sδ(M1−D1). His payoff
from accommodating (given that firm 2 will stay for sure) is U1(A) = (1 + δ)D1. Since
he is willing to mix, it must be the case that U1(P) = U1(A), or:

s = D1 − P1

δ(M1 −D1)
(5)

In other words, firm 2 must also be mixing after predation. Since she is willing to mix,
it must be the case that U2(S|P) = U2(E|P). Recall that her payoffs are U2(S|P) =
q1(P2 + δD2)+ (1− q1)(P2 + δP2) and U2(E|P) = P2, so it must be the case that q1D2 +
(1− q1)P2 = 0, or:

q1 = −P2

D2 − P2
. (6)

Since P2 < 0, this is a valid belief. Hence, for this PBE, player 2 must mix after predation
with probability s from (5), and she is willing to do this only when her belief is q1

given in (6). But where does this belief come from? Given the sane firm’s probability of
predation, r , we can compute q1 from Bayes’ rule:

q1 = Pr(sane|P) = Pr(P |sane)Pr(sane)
Pr(P |sane)Pr(sane)+ Pr(P |crazy)Pr(crazy)

= rp
rp + (1)(1− p).

Solving this for r then gives us the mixing probability in terms of q1:

r = (1− p)q1

p(1− q1)
= −(1− p)P2

pD2
, (7)

be the probability that she exits, and so the sane firm’s payoff from preying is (1 − r)(P1 + δD1) + r(P1 +
δM1) = P1 + δD1 + rδ(M1 − D1). To induce the sane entrant to prey, the probability of exit must be such
that P1 + δD1 + rδ(M1 − D1) ≥ (1 + δ)D1, or rδ(M1 − D1) ≥ D1 − P1. Therefore, for any r ≥ D1−P1

δ(M1−D1)
the

sane firm will prefer to prey, and since condition (2) is satisfied with equality, firm 2 is indifferent between
staying and exiting, and so can play the mixed strategy r . There exists a continuum of pooling PBE in this
case. However, satisfying (2) with equality is a knife-edge condition and even the slightest perturbation in the
parameters would violate it. For this reason, such PBE are usually ignored in applied work.
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where we used the value of q1 from (6). Thus, if the sane firm preys with probability r
from (7), then q1 will be precisely equal to the value in (6), which means firm 2 will be
indifferent between staying and exiting after predation. In particular, she can play the
mixed strategy where she exits with probability s defined in condition (5), which in turn
makes the sane firm 1 indifferent and willing to mix with probability r . Therefore, the
strategies and beliefs described above constitute a semi-separating PBE.

Although there are different types of PBE in this game, it is not the case that we are dealing
with multiple equilibria (except the special knife-edge case of continuum of pooling PBE).
For each set of different values of the exogenously specified parameters, the model has a
(generically) unique PBE. This is due to the restrictive assumption that the crazy firm always
preys, which results in two facts: (i) predation is never a zero-probability event, and (ii)
accommodation reveals firm 1’s type with certainty. In more interesting (and more common)
models, this will not be the case, as we see in the next example.

2.2 Spence’s Education Game

Now that you are in graduate school, you probably have a good reason to think education is
important.13 Although I firmly believe that education has intrinsic value, it would be stupid
to deny that it also has economic, or instrumental, value as well. As a matter of fact, I am
willing to bet that the majority of students go to college not for the sake of knowledge and
bettering themselves, but because they think that without the skills, or at least the little piece
of paper they get at the end of four years, they will not have good chances of finding a decent
job. The idea is that potential employers do not know you, and will therefore look for some
signals about your potential to be a productive worker. A university diploma, acquired after
meeting rigorous formal requirements, is such a signal and may tell the employer that you are
intelligent and well-trained. Employers will not only be more willing to hire such a person,
but will probably pay premium to get him/her. According to this view, instead of making
people smart, education exists to help smart people prove that they are smart by forcing the
stupid ones to drop out.14

The following simple model is based on Spence’s (1973) seminal contribution that pre-
ceded the literature on signaling games and even the definition of equilibrium concepts like
PBE. There are two types of workers, a high ability (H) and a low ability (L) type. The prior
probability of having high ability is p ∈ (0,1) and after Nature selects the type, the worker
learns it and can choose a level of education e ≥ 0 before applying for a job. The cost of
obtaining an educational level e is e for the low ability worker, and e/2 for the high ability
worker. (In other words high ability workers find education much less costly.)

The only thing the employer observes is the level of education. The employer offers a
wage w(e) as a function of the educational level, and the employers’ payoff is 2 −w(e) if

13Or maybe not. I went to graduate school because I really did not want to work a regular job from 8:00a to
5:00p, did not want to be paid for writing programs (my B.S. is in Computer Science) even if meant making over
100k, and did not want to have a boss telling me what to do. I had no training in Political Science whatsoever,
and so (naturally) decided it would be worth a try. Here I am now, several years later, working a job from 7:00a
to 11:00p including weekends, making significantly less money, and although without a boss, having to deal
with a huge government bureaucracy. Was this economically stupid? Sure. Am I happy? You betcha. Where
else do you get paid to read books, think great thoughts, and corrupt the youth?

14Here, perhaps, is one reason why Universities that are generally regarded better academically tend to attract
smart students, who then go on to earn big bucks. They make the screening process more difficult, and so the
ones that survive it are truly exceptional. . . maybe.
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the worker turns out to have high ability, and 1 −w(e) if he turns out to have low ability.
The worker’s payoffs are w(e) − e/2 if he is the H type, and w(e) − e if he is the L type.
Since the job market is competitive, the employer must offer a competitive wage such that
the expected profit is zero.

Let μ(H|e) denote the belief of the employer that the worker has high ability given it ob-
serves a level of education e. Because of the competitiveness requirement, (2−w(e))μ(H|e)+
(1 − w(e))(1 − μ(H|e)) = 0, which implies that the wage schedule must satisfy w(e) =
2μ(H|e)+ (1− μ(H|e)). Let eH be the level of education chosen by the H type, and eL be the
level of education chosen by the L type. We want to find the set of PBE of this game.

• Pooling Equilibria. In these PBE, eH = eL = e∗, and Bayes’ rule gives μ(H|e∗) = p,
and μ(L|e∗) = 1 − p because the employer learns nothing. The wage offered then is
w(e∗) = 2p + 1− p = 1+ p, and so the worker’s payoffs are

u(w, e∗|H) = 1+ p − e∗/2
u(w, e∗|L) = 1+ p − e∗.

Observing a level of education e ≠ e∗ is a zero-probability event, and so we must assign
some beliefs to the employer for this case before we can proceed. The easiest thing
to do is to assign pessimistic beliefs such that μ(H|e) = 0 whenever e ≠ e∗, and so
the employer updates to believe the worker has a low ability if it observes any level
of eduction other than e∗. This minimizes the temptation to deviate for both players.
Of course, if the employer believes it is hiring the L type, w(e) = 1, and the worker’s
payoffs are 1− e/2 if type H, and 1− e if type L. Since choosing e∗ must be at least as
good as choosing any other e for both types, we have

1+p − e∗/2 ≥ 1− e/2
1+ p − e∗ ≥ 1− e

for all e ≥ 0. These inequalities are satisfied whenever e∗ ≤ p. Therefore, any e∗ ≤ p
can be supported in equilibrium by using a belief system similar to the one above:

μ(H|e) =
⎧⎨
⎩p if e = e∗

0 if e ≠ e∗

Therefore, there is a continuum of pooling equilibria.

• Separating Equilibria. In these PBE, eH ≠ eL. From Bayes’ rule, μ(H|eH) = 1 and
μ(H|eL) = 0, and so we have w(eH) = 2 and w(eL) = 1. Given that, type L worker
chooses eL = 0 because anything else would leave him strictly worse off. In equilibrium,
it must not have an incentive to mimic type H’s action, so type H must choose eH > 0
to prevent that (and vice versa, it must also not be the case that type H wants to mimic
type L’s behavior). We have two conditions:

2− eH/2 ≥ 1

1 ≥ 2− eH
The first prevents the H type from choosing education level of 0 (the L type’s action),
and the second prevents the L type from choosing eH (theH type’s action). We therefore
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have eH ∈ [1,2]. The following belief system can support any eH in this interval:

μ(H|e) =
⎧⎨
⎩0 if e < eH

1 if e ≥ eH
That is, if the employer observes any level of education less than eH , it updates to
believe that the worker’s type is L, and if it observes any level greater than or equal to
eH , it updates to believe that the worker’s type is H. Note again that we have assigned
beliefs for probability zero events ourselves because in the separating PBE, any level of
education except 0 and eH is off the equilibrium path.

Therefore, there is a continuum of separating equilibria in which the low ability worker
chooses educational level 0, and the high ability worker chooses level eH ∈ [1,2], and
the employer uses the belief system specified above. In this case, as the case with
pooling PBE, the leeway in specifying off-the-path beliefs produces a multiplicity of
equilibria.

• Semi-separating Equilibria. I leave these to you as an exercise.

There is a continuum of separating equilibria, and so we cannot say anything about the
level of education a worker with high ability will choose other than it will be high enough to
deter a low-ability worker from getting it. The punch line of the model, however, is clear and
captures the idea of education as a signaling device.

There are two substantive insights you should take away from the result. First, the only
way for a high ability worker to get the high-paying job he deserves is to signal his type by
investing in costly education. Otherwise, the employer will treat him as a low-ability worker.
This corresponds quite well to the empirical observation that workers with more years of
schooling on the average tend to earn higher wages.

Second, the value of education as a signaling device depends not on the skills that workers
receive through it, but on the costs they have to pay to acquire it. The critical insight here is
that for education to be useful as a signalling device, it is sufficient that education is costlier
for the low ability type to acquire. It does not matter if education really has any value added
as long as it is less costly for the high-ability type.

3 Computing Perfect Bayesian Equilibria

We now look at several examples of how we can characterize PBE in extensive form games.

3.1 The Yildiz Game

Consider the game in Fig. 12 (p. 27) from notes by Muhamet Yildiz. Backward induction on
player 1’s actions at his two penultimate information sets 1.3 and 1.4 tells us that in any
PBE he must be choosing e and h respectively. Furthermore, at 1.2 he must be choosing d
because doing so would yield a strictly higher payoff (of 0) no matter what player 2 does.
Hence, in any PBE, player 1’s strategy must specify playing d at 1.2, e at 1.3, and h at 1.4,
each with probability 1.

Let x denote player 2’s posterior belief that she is at the lower node in her information set.
Suppose that player 1 also chooses a with certainty. In this case, Bayes rule would pin down
player 2’s belief to x = 1, in which case she would certainly choose L. But if she chooses L at
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Figure 12: The Yildiz Game.

her information set, then player 1 could do strictly better by choosing b instead of a at his
information set 1.1, and therefore it cannot be the case that in PBE he would choose a with
certainty.

Suppose now that player 1 chose b with certainty at 1.1. In this case, Bayes rule pins down
player 2’s belief to x = .1/(.1 + .9) = .1 (intuitively, she can learn nothing new for player
1’s action). Given player 1’s sequentially rational strategy at his last information sets, the
expected payoff from choosing L then is (.1)(2)+ (.9)(2) = 2, and the expected payoff from
choosing R then is (.1)(−5) + (.9)(3) = 2.2. Hence, the only sequentially rational strategy
for player 2 would be to choose R with certainty. However, if she chooses R for sure, then
player 1 can do better by playing a at the information set 1.1 because this would give him a
payoff of 4, which is strictly better than the payoff of 3 he would get from playing b for sure.
Therefore, it cannot be the case that in PBE he would choose b with certainty.

We conclude that in equilibrium player 1 must be mixing at information set 1.1. Let p
denote the probability with which he chooses b, and let q denote the probability with which
player 2 chooses R. Because player 1 is willing to mix, it follows that the expected payoff from
choosing amust be the same as the expected payoff from choosing b, or 4 = q(3)+(1−q)(5),
which gives q = .5. That is, because player 1 is mixing in equilibrium, it must be the case that
player 2 is mixing as well.

But for player 2 to be willing to mix, it must be the case that she is indifferent between
choosing L and R at her information set. That is, the expected payoff from L must equal the
expected payoff from R, or x(2)+ (1−x)(2) = x(−5)+ (1−x)(3), which gives x = 1/8. Only
if her posterior belief is exactly 1/8 would she be willing to mix.

From Bayes rule, x = (.1)(1)/[(.1)(1)+(.9)p], and hence player 1 must choose p such that
x = 1/8. Solving the equation yields the correct value for p = 7/9, and so this must be the
equilibrium mixing probability for player 1 at 1.1. We conclude that the game has a unique
perfect Bayesian equilibrium in the following strategies:

• Player 1 chooses b with probability 7/9 at 1.1, and chooses with certainty d at 1.2, e at
1.3, and h at 1.4;

• Player 2 chooses R with probability 1/2.
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Player 2’s beliefs at her information set are updated according to Bayes rule to x = 1/8.
The strategies are sequentially rational given the beliefs and beliefs are consistent with the
strategies. Hence, we have a PBE.

3.2 The Myerson-Rosenthal Game

This makes the previous example a bit more complicated. In the Yildiz Game, player 1 is the
informed party (knows the outcome of the chance move by Nature) and player 2 is the one
who has incomplete information. Player 2 will attempt to infer information from player 1’s
actions and because the players have somewhat conflicting interests, player 1 obfuscates the
inference by playing a mixed strategy (which prevents player 2 from learning with certainty
what he knows). Since the informed player moves first, this is an instance of a signaling game.
The game in this section reverses this: the first mover is the uninformed player now and he
must take an action that would induce the other player to reveal some information. Since the
preferences are again somewhat conflicting, player 2 will have incentives to obfuscate this
inferences in her turn, making the screening process harder for player 1.

1/20

19/20

N 1 1

a

0,0

b

L

−1,5
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c

4,4
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3,9

D 8,8

a

0,0

b

c

4,4

d 8,8

1−y

y

2.1 2.2

Figure 13: The Myerson-Rosenthal Game.

The game is depicted in Fig. 13 (p. 28). The interpretation is as follows. Players take
turns being generous or selfish until someone is selfish or both have been generous twice.
Each player loses $1 by being generous, but gains $5 each time the other player is generous.
(So actions a, L, c, and U are selfish, but b, R, and d, and D are generous.) The catch is
that player 1 is unsure whether player 2 is capable of being selfish: he estimates that with
probability 19/20 she can be selfish but with (small) probability 1/20 she is the virtuous kind
whose integrity compels her to be generous regardless of player 1’s behavior. That is, she
always chooses to be generous whenever she has to move. Of course, player 2 knows her
own type.

At his first information set, player 1 believes that player 2 is virtuous with probability 1/20.
Let y denote his (posterior) belief that she is virtues after they have taken two generous ac-
tions. Observe now that at her last information set 2.2, the selfish player 2’s only sequentially
rational choice is U , which means that in any PBE she will always be selfish there. We now
have to find the rest of the strategies and beliefs.

28



Suppose player 1 chose d with certainty in equilibrium. The only way this would be se-
quentially rational is if the expected payoff from c did not exceed the expected payoff from
d given 2’s sequentially rational strategy, or if 4 ≤ 8y + 3(1−y), which requires y ≥ 1/5. Be-
cause 1 is choosing d for sure, player 2’s expected payoff from choosing R at 2.1 is 9, which
is strictly better than getting 5 by playing L, and so she would certainly choose R. Given
that she would choose R, player 1’s expected payoff from choosing b at his first information
set would be (1/20)(8) + (19/20)(3) = 3.25, which is strictly greater than 0, which is what he
would get by playing a. Therefore, he would choose b for sure. But this means that player
1’s second information set is now along the path of play, and Bayes rule gives

y = (1/20)(1)
(1/20)(1)+ (19/20)(1)

= 1/20 < 1/5,

which contradicts the necessary condition that makes playing d with certainty sequentially
rational. Therefore, there cannot be a PBE where player 1 chooses d with certainty.

Suppose player 1 chose c with certainty in equilibrium. The only way this could be sequen-
tially rational is (by reversing the inequality in the previous paragraph) if y ≤ 1/5. Because 1
is playing c for sure, player 2 would certainly choose L at 2.1 because the expected payoff is
strictly greater. Given her sequentially rational strategy, choosing b would yield player 1 the
expected payoff of 4(1/20)+(−1)(19/20) = −3/4. Hence, the sequentially rational choice at this
information set is a. This leaves player 1’s second information set off the path of play, so
Bayes rule cannot pin down the beliefs there. In this case, we are free to assign any beliefs,
and in particular we can assign some y ≤ 1/5. We have therefore found a continuum of PBE
in this game:

• Player 1 chooses a and c with certainty at the respective information sets; if he ever
finds himself at his second information set, his belief is y ≤ 1/5;

• Player 2 chooses L at 2.1 and U at 2.2.

We have a continuum of PBE because there is an infinite number of beliefs that satisfy the
requirement. However, all these PBE are equivalent in a very important sense: they predict
the same equilibrium path of play, and they only differ in beliefs following zero-probability
events.

This may be a bit disconcerting in the sense that this equilibrium seems to require unrea-
sonable beliefs by player 1. Here’s why. Suppose there is an extremely small probability ε > 0
that player 1 makes a mistake at his first information set and plays b instead of a. Then,
using Bayes rule his posterior belief would have to be:

y = (1/20)ε
(1/20)ε + (19/20)εσ2(R)

= 1

because the only way to get to player 1’s second information set would be from the lower
node at his first information set (recall that player 2 chooses L, and so σ2(R) = 0). Note that
this is true regardless of how small ε we take. But y = 1 contradicts the requirement that
y ≤ 1/5. In other words, it does not seem reasonable for player 1 to hold such beliefs because
even the slightest error would require y = 1.

The PBE solution concept is too weak to pick out this problem. The stronger solution
concept of sequential equilibrium will eliminate all of the above PBE that require these un-
reasonable beliefs. Intuitively, sequential equilibrium simply formalizes the argument from
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the previous paragraph. Instead of requiring that beliefs are consistent along the equilibrium
path only, it requires that they are fully consistent: that is, that they are consistent for slightly
perturbed behavior strategies that reach all information sets with positive probability (and
so Bayes rule would pin beliefs down everywhere). A belief vector π is fully consistent with a
strategy σ if, and only if, there exist behavior strategy profiles that are arbitrarily close to σ
and that visit all information sets with positive probability, such that the beliefs vectors that
satisfy Bayes rule for these profiles are arbitrarily close to π .

Sequential equilibria are therefore a subset of the perfect Bayesian equilibria and, more
importantly, always exist. Unfortunately, they can be quite difficult to compute because
checking full consistency requires finding the limits of systems of beliefs in sequences of
games in which the perturbed behavior strategies converge to the strategies under consider-
ation. We will not cover sequential equilibria in this class. However, let’s see how the idea of
full consistency would eliminate the PBE we just found. The posterior belief y is given by:

y = (1/20)σ1(b)
(1/20)σ1(b)+ (19/20)σ1(b)σ2(R)

= 1
1+ 19σ2(R)

,

where the latter inequality would have to hold even when σ1(b) = 0 because it would hold
for any slightly perturbed behavior strategies with σ1(b) > 0. Returning to our solution, the
requirement that y ≤ 1/5 then translates into:

1
1+ 19σ2(R)

≤ 1
5
� σ2(R) ≥ 4

19
.

However, as we have seen, player 2’s only sequentially rational strategy is to play L with
certainty, and so σ2(R) = 0, which contradicts this requirement. Hence, no beliefs y ≤ 1/5
are fully consistent, and therefore none of these PBE are sequential equilibria.

Finally, we turn to the possibility that player 1 mixes at his second information set in
equilibrium. Since he is willing to randomize, he must be indifferent between his two actions,
or in other words, 8y + 3(1−y) = 4 which yields y = 1/5. As we have seen already,

y = 1
1+ 19σ2(R)

= 1
5
� σ2(R) = 4

19
.

This is the full consistency requirement that must also hold in PBE for any σ1(b) > 0. If player
2 is willing to randomize, she must be indifferent between her two actions: 5 = 4σ1(c) +
9(1 − σ1(c)), which implies that σ1(c) = 4/5. Turning now to player 1’s move at his first
information set, choosing b would yield an expected payoff of

(19/20)
[
(−1)(1− σ2(R))+ (4σ1(c)+ 3(1− σ1(c)))σ2(R)

]
+ (1/20)

[
4σ1(c)+ 8(1− σ1(c))

]
= (19/20)

[
(−1)(15/19)+ (4(4/5)+ 3(1/5))(4/19)

]
+ (1/20)

[
4(4/5)+ 8(1/5)

]
= 1/4.

Because this expected payoff is strictly greater than 0, which is what player 1 would get if he
chose a, sequential rationality requires that he chooses b with certainty. We conclude that
the following strategies and beliefs constitute a perfect Bayesian (and the unique sequential)
equilibrium with y = 1/5:

• Player 1 chooses b with probability 1, and c with probability 4/5;

• Player 2 chooses R with probability 4/19, and U with probability 1.
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Substantively, this solution tells us that player 1 must begin the game by being generous.
Small amounts of doubt can have significant impacts on how rational players behave. If
player 1 were sure about 2’s capacity for being selfish, then perpetual selfishness would be
the only equilibrium outcome. If, however, it is common knowledge that player 2 may be
generous by disposition, the result is different. Even when player 1 attaches a very small
probability to this event, he must be generous at least once because this would encourage 2
to reciprocate even if she can be selfish. The selfish player 2 would reciprocate with higher
probability because she wants player 1 to update his beliefs to an even higher probability that
she is virtuous, which would induce him to be generous the second time around, at which
point she would defect and reap her highest payoff of 9. Notice how in this PBE player 1’s
posterior belief went from 1/20 up to y = 1/5. Of course, the selfish player 2 would not want
to try to manipulate player 1’s beliefs unless there was an initial small amount of uncertainty
that would cause player 1 to doubt her capacity for being selfish.

3.3 One-Period Sequential Bargaining

There are two players, a seller S and a buyer B. The buyer has a pot of money worth v, but
the seller does not know its exact amount. He believes that it is v = $20 with probability π ,
and v = $10 with probability 1 − π . The seller sets the price p ≥ 0 for a product that the
buyer wants to get at the cheapest price possible. After observing the price, B either buys,
yielding the payoff vector (p,v−p), or does not, yielding (0,0). The game is shown in Fig. 14
(p. 31).
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Figure 14: The One-Period Bargaining Game.

Player B would accept any p ≤ 20 at her left information set (that is, if she received $20)
and would accept any p ≤ 10 at her right information set (that is, if she received $10). In
other words, B buys iff v ≥ p. This means that if S sets the price at p = $10, then he is sure
to sell the product and get a payoff of 10. If he sets the price at 10 < p ≤ 20, then B would
only buy if she had $20, in which case the seller’s expected payoff is πp. Finally, the seller’s
payoff for any p > 20 is zero because B would never buy.

Consequently, the seller would never ask for more than $20 or less than $10 in equilibrium.
What is he going to ask for then? The choice is between offering $10 (which is the maximum
a poor B would accept) and something the rich B would accept. Because any p > 10 will be
rejected by the poor B, the seller would not ask for less than $20, which is the maximum that
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the rich B would accept. Hence, the seller’s choice is really between offering $10 and $20.
When would he offer $20?

The expected payoff from this offer is 20π , and the expected payoff from $10 is 10 (be-
cause it is always accepted). Therefore, the seller would ask for $20 whenever 20π ≥ 10, or
π ≥ 1/2. In other words, if S is sufficiently optimistic about the amount of money the buyer
has, he will set the price at the ceiling. If, on the other hand, he is pessimistic about the
prospect, he would set the price at its lowest. The seller is indifferent at π = 1/2.

3.4 A Three-Player Game

Let’s try the game with three players shown in Fig. 15 (p. 32). This is a slightly modified
version of a game in notes by David Myatt.
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Figure 15: The Three Player Game.

Player 3’s expected payoff from choosing a is 4x + 0(1−x) = 4x, and his expected payoff
from choosing b is x + 2(1− x) = 2− x. The sequentially rational best response is:

σ3(a) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x > 2/5
0 if x < 2/5
[0,1] otherwise.

Suppose then that x > 2/5, and so player 3 is sure to choose a at his information set. In this
case, player 2 would strictly prefer to choose L, and given this strategy, player 1’s optimal
choice is D. Given these strategies, Bayes rule pins down x = 0, which contradicts the
requirement that x > 2/5. Hence, there is no such PBE.

Suppose now that x < 2/5, and so player 3 is sure to choose b at his information set. In
this case, player 2 strictly prefers to choose R. Given her strategy, player 1’s best response
would be U . In this case, Bayes rule pins down x = 1, which contradicts the requirement that
x < 2/5. Hence, there is no such PBE.

We conclude that in PBE, x = 2/5, and so player 3 would be willing to mix. Player 2’s
expected payoff from L would then be 5σ3(a) + 2(1 − σ3(a)) = 3σ3(a) + 2, and her payoff
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from R is 3. Hence, her best response would be:

σ2(L) =

⎧⎪⎪⎨
⎪⎪⎩

1 if σ3(a) > 1/3
0 if σ3(a) < 1/3
[0,1] otherwise.

Suppose then that σ3(a) > 1/3, and so she would choose L for sure. In this case, player
1’s expected payoff from U is 4σ3(a) + 6(1 − σ3(a)) = 6 − 2σ3(a). His expected payoff
from D would be 5σ3(a) + 2(1 − σ3(a)) = 2 + 3σ3(a). He would therefore choose U if
σ3(a) < 4/5, would choose D otherwise, and would be indifferent when σ3(a) = 4/5. However
if he chooses D for sure, then Bayes rule pins down x = 0, which contradicts x = 2/5.
Similarly, if he chooses U for sure, Bayes rule pins down x = 1, which is also a contradiction.
Therefore, he must be mixing, which implies that σ3(a) = 4/5 > 1/3, and so player 2’s strategy
is sequentially rational. What is the mixing probability? It must be such that x = 2/5, which
implies that σ1(U) = 2/5. We conclude that the following strategies and beliefs constitute a
perfect Bayesian equilibrium:

• Player 1 chooses U with probability 2/5

• Player 2 chooses L with probability 1

• Player 3 chooses a with probability 4/5, and updates to believe x = 2/5.

Suppose now that σ3(a) < 1/3, and so player 2 would choose R for sure. In this case, player
1’s expected payoff from D is 3, which means that he would choose U if 6− 2σ3(a) > 3. But
since σ3(a) can at most equal 1, this condition is always satisfied, and therefore player 1
would always choose U . In this case, Bayes rule pins down x = 1, which contradicts the
requirement that x = 2/5. Hence, there can be no such PBE.

Finally, suppose that σ3(a) = 1/3, and so player 2 is indifferent between her two actions.
Player 1’s expected payoff from D in this case would be:

3(1− σ2(L))+σ2(L)
[
5(1/3)+ 2(2/3)

]
= 3.

As we have seen already, in this case he would strictly prefer to choose U . But in this case,
Bayes rule pins down x = 1, which contradicts the requirement that x = 2/5. Hence, no such
PBE exists. We conclude that the PBE identified in the preceding paragraph is the unique
solution to this game.

3.5 Rationalist Explanation for War

Two players bargain over the division of territory represented by the interval [0,1]. Think
of 0 as player 1’s capital and 1 as player 2’s capital. Each player prefers to get a larger
share of territory measured in terms of distance from his capital. Assume that players are
risk-neutral, and so the utilities of a division x ∈ [0,1] are u1(x) = x and u2(x) = 1 − x,
respectively.

The structure of the game is as follows. Nature draws the the war costs of player 2, c2,
from a uniform distribution over the interval [0,1]. Player 2 observes her costs but player 1
does not. The war costs of player 1, c1 ∈ [0,1], are common knowledge. Player 1 makes a
demand x ∈ [0,1], which player 2 can either accept or reject by going to war. If she goes to
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war, player 1 will prevail with probability p ∈ (0,1). The player who wins the war, gets his
most preferred outcome.

We begin by calculating the expected utility of war for both players:

U1(War) = pu1(1)+ (1− p)u1(0)− c1 = p − c1

U2(War) = pu2(1)+ (1− p)u2(0)− c2 = 1− p − c2.

Before we find the PBE of this game, let’s see what would happen under complete information.
Player 1 will never offer anything less than what he expects to get with fighting, and hence
any offer that he would agree to must be x ≥ p − c1. Similarly, player 2 will never accept
anything less than what she expects to get with fighting, and hence any offer that she would
agree to must be 1− x ≥ 1 − p − c2, or x ≤ p + c2. Hence, the set of offers that both prefer
to war is [p − c1, p + c2]. Because costs of war are non-negative, this interval always exists.
In other words, there always exists a negotiated settlement that both players strictly prefer to
going to war. With complete information, war will never occur in equilibrium in this model.

What happens with asymmetric information? Since player 2 knows her cost when the
offer is made, we can figure out what offers she will accept and what offers she will reject.
Accepting an offer x yields her a payoff of 1 − x, while rejecting it yields her a payoff of
1−p− c2. She will therefore accept an offer if, and only if, 1−x ≥ 1−p− c2, or, in terms of
the costs, if

c2 ≥ x − p.
Player 1 does not know what c2 is, but knows the distribution from which it is drawn. From
his perspective, the choice boils down to making an offer and risk getting it rejected. Given
player 2’s sequentially rational strategy, from player 1’s perspective the probability that an
offer x is accepted is the probability that c2 ≥ x − p, or, given the uniform assumption,

Pr(c2 ≥ x − p) = 1− Pr(c2 < x − p) = 1− x + p.
Hence, if player 1 makes an offer x, it will be accepted with probability 1−x+p, in which case
he would obtain a payoff of x, and it will be rejected with probability 1−1+x−p = x−p, in
which case he would obtain an expected payoff of p − c1. The expected utility from offering
x is therefore:

U1(x) = (1− x + p)(x)+ (x − p)(p − c1).

Player 1 will choose x that maximizes his expected utility:

∂U1(x)
∂x

= 1− 2x + 2p − c1 = 0 � x∗ = 1+ 2p − c1

2
.

The perfect Bayesian equilibrium is as follows:

• Player 1 offers min{max{0, x∗},1}.
• Player 2 accepts all offers x ≤ c2 − p, and rejects all others.

In the PBE, the ex ante risk of war is x∗ − p = 1−c1
2 > 0 as long as c1 < 1. In other words, the

risk of war is always strictly positive. This contrasts the complete information case where
the equilibrium probability of war is zero. Hence, this model provides an explanation of
how rational players can end up in a costly war. This is the well-known risk-return trade off:
player 1 balances the risk of having an offer rejected against the benefits of offering to keep
for himself slightly more. This result persists in models with richer bargaining protocols,
where pre-play communication is allowed, and even where players can intermittently fight.
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3.6 The Perjury Trap Game

This one is from notes by Jean-Pierre Langlois. All similarities to any people, living or dead, or
any events, in Washington D.C. or elsewhere, is purely coincidental. A prosecutor, whom we
shall call (randomly) Ken, is investigating a high-ranking government official, whom we shall
call (just as randomly) Bill. A young woman, Monica, has worked for Bill and is suspected
of lying earlier to protect him. Ken is considering indicting Monica but he is really after the
bigger fish: he has reason to believe that Monica holds some evidence concerning Bill and
is hoping to get her to cooperate fully by offering her immunity. The problem is that he
cannot be sure that she will, in fact, cooperate once granted immunity and even if she does
cooperate, the evidence she has may be trivial. However, since her testimony will force Bill
to take a public stand, Ken hopes to trap him into perjury or at least into admitting his guilt.
Monica is most afraid of being discredited and, all else equal, would rather not lie. She really
wants to be vindicated if she tells the truth or else to see Bill admit to all the facts. Bill, of
course, wants to avoid getting trapped or admitting to any transgressions. Assuming that
both Ken and Bill estimate that there’s a 50 : 50 chance of Monica’s evidence being hard,
Fig. 16 (p. 35) shows one possible specification of this game.
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Figure 16: The Langlois Perjury Game.

We begin by finding the sequentially rational strategies for the players. Bill will deny when-
ever the expected payoff from denying, UB(D), exceeds his expected payoff from admitting,
UB(A). Let x denote Bill’s belief that the evidence is hard when he takes the stand. Then,

UB(D) = x(1)+ (1− x)(6) = 6− 5x
UB(A) = x(3)+ (1− x)(2) = 2+ x,

so he will deny whenever 6− 5x > 2+ x ⇒ x < 2/3. That is, Bill will deny if he believes that
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the evidence is hard with probability less than 2/3; otherwise, he will admit guilt. He is, of
course, indifferent if x = 2/3, so he can randomize.

Turning now to Monica. Although she knows the quality of the evidence she has, she is not
sure what Bill will do if she tells the truth. Let p denote the probability that Bill will deny if
he is called to testify. If the evidence is hard, Monica will therefore expect to get 5p+7(1−p)
if she tells the truth and 3 if she lies. Observe that her payoff from telling the truth is at least
5, and as such is always strictly better than her payoff from lying. That is, telling the truth
strictly dominates lying here. This means that in any equilibrium Monica will always tell the
truth if the evidence is hard.

What if the evidence is soft? Lying gives her a payoff of 2, whereas telling the truth gives
her an expected payoff of 1p + 8(1 − p) = 8 − 7p. Therefore, she will tell the truth if
8 − 7p > 2 ⇒ p < 6/7. That is, if Monica knows the evidence is soft, she will tell the truth if
she expects Bill to deny it with probability less than 6/7; otherwise she will lie. (If p = 6/7, she
is, of course, indifferent and can randomize.)

We can now inspect the various candidate equilibrium profiles by type:

• Pooling Equilibrium. Since Monica always tells the truth when the evidence is hard, the
only possible pooling equilibrium is when she also tells the truth if the evidence is soft.
Suppose that in equilibrium Monica tells the truth when the evidence is soft. To make
this sequentially rational, it has to be the case that p ≤ 6/7. If Ken offers immunity, he
will expect her to tell the truth no matter what, so his expected payoff from doing so is:

UK(I) = (1/2)
[
8p + 6(1− p)]+ (1/2)

[
1p + 7(1− p)] = (1/2)(13− 4p).

If he decides not to offer immunity, then his expected payoff is UK(N) = (1/2)(4) +
(1/2)(5) = (1/2)(9). Hence, he will offer immunity whenever UK(I) ≥ UK(N), or when
13− 4p ≥ 9⇒ p ≤ 1. That is, no matter what Bill does, Ken will always offer immunity.
If that’s the case, Bill cannot update his beliefs: Ken offers immunity and Monica tells
the truth regardless of the quality of evidence. Therefore, x = 1/2, which implies that
Bill will, in fact, deny for sure (recall that he does so for any x < 2/3). Hence, p = 1,
which contradicts the requirement p ≤ 6/7, which is necessary to get Monica to tell the
truth when the evidence is soft. This is a contradiction, so such an equilibrium cannot
exist.

• Separating Equilibrium. Since Monica always tells the truth when the evidence is hard,
the only such equilibrium involves her lying when it is soft. Suppose that in equilibrium
Monica lies when the evidence is soft. To make this sequentially rational, it has to be
the case that p ≥ 6/7. If Ken offers immunity, he expects a payoff of:

UK(I) = (1/2)
[
8p + 6(1− p)]+ (1/2)(3) = (1/2)(9+ 2p).

We already know that his expected payoff from not making an offer is (1/2)(9), so he
will prefer to offer immunity whenever 9 + 2p ≥ 9 ⇒ p ≥ 0. That is, no matter what
Bill does, Ken will always offer immunity. This now enables Bill to infer the quality of
the evidence with certainty: since Ken offers immunity no matter what but Monica only
tells the truth if the evidence is hard, if Bill ever finds himself on the witness stand,
he will know that the evidence must be hard for sure; that is x = 1. In this case,
his sequentially rational response is to admit guilt (recall that he does so whenever
p > 2/3), which means p = 0. But this contradicts the requirement that p ≥ 6/7, which
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is necessary to get Monica to lie when the evidence is soft. This is a contradiction, so
such an equilibrium cannot exist.

• Semi-separating Equilibrium. Since Monica always tells the truth when the evidence is
hard, the only such equilibrium involves her mixing when the evidence is soft. Suppose
that in equilibrium Monica mixes when the evidence is soft. To make this sequentially
rational, it has to be the case that p = 6/7, which means that Bill must be mixing as well,
which implies x = 2/3. Let q denote the probability that Monica tells the truth when the
evidence is soft. If Ken offers immunity, he expects a payoff of:

UK(I) = (1/2)
[
8p + 6(1− p)]+ (1/2)

[
q(1p + 7(1− p))+ (1− q)(3)]

= (1/2)
[
9+ 2p + 2q(2− 3p)

]
.

As before, his expected payoff from making no offer is (1/2)(9), which means that he
will prefer to offer immunity whenever 9 + 2p + 2q(2 − 3p) ≥ 9 ⇒ p + q(2 − 3p) ≥ 0.
Using p = 6/7, this reduces to q ≤ 3/2. In other words, he will offer immunity no matter
what probability q Monica uses. This now pins down Bill’s posterior belief by Bayes’
rule:

x = (1/2)(1)(1)
(1/2)(1)(1)+ (1/2)(1)q

= 1
1+ q.

Because Bill is willing to mix, we know that x = 2/3. Substituting this in the equation
above and solving for q yields: q = 1/2. This is the unique PBE.

Therefore the following strategies constitute the unique perfect Bayesian equilibrium of
the Perjury Game:

• Ken always offers immunity;

• Monica tells the truth if the evidence is hard, and tells the truth with probability 1/2 if
the evidence is soft;

• Bill denies with probability 6/7, believes that the evidence is hard with probability 2/3.

The gamble is worth Ken’s while: the probability of catching Bill in the perjury trap equals
the likelihood of Monica having hard evidence, 1/2, times the likelihood that Bill denies the
allegations, 6/7, for an overall probability of 3/7, or approximately 43%. Bill is going to have a
hard time in this game.
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