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Abstract

This paper analyzes bargaining outcomes when agents do not have stationary time pref-

erences (as represented by a constant discount factor) but are pressed by firm deadlines. We

consider a dynamic model where traders with heterogeneous deadlines are matched randomly

into pairs who then bargain about the division of a fixed surplus. A trader leaves the market

when an agreement has been reached or when his deadline expires. Our analysis encompasses

both the case of perfect and imperfect information about the partner’s deadline. We define,

characterize and show the existence of a stationary equilibrium configuration. We charac-

terize when delay occurs and when deadlines are missed in equilibrium and show that the

payoffs of traders are strictly increasing and concave in own deadline, unless bargaining takes

place under imperfect information and no delay occurs, in which case all pairs immediately

agree on an almost even split. We provide comparative statics exercises and illustrate our

results by some examples.
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1 Introduction

The driving force of any dynamic bargaining model is the assumption that people prefer to real-

ize gains early rather than late. If bargaining partners do not care about the time of agreement,

there is no incentive to come to agreements in the first place and bargaining could go on forever.

The eagerness to reach early agreements has traditionally been modelled by making the (ex-

pected) bargaining surplus shrink over time. This can be done by introducing a discount factor

strictly less than one, by assuming a positive probability of breakdown of negotiation, or by

assuming that bargaining partners face a fixed cost of bargaining per period. All these models

of time preferences assume stationarity (Rubinstein, 1982): agreement x today is preferred over

agreement y tomorrow if and only if agreement x in period t is preferred over agreement y in

period t + 1. This assumption implies that, in the subgame perfect equilibrium of the infinite

alternating offer game, it does not matter how much time has elapsed because the bargaining

cost is sunk. In this paper, we want to consider deadlines as an alternative way to express a

preference for early agreements in bargaining. In our interpretation, an agreement x reached

after the deadline has expired has no value, whereas it has a positive value as long as it is reached

before the deadline. This violates the stationarity assumption.

Deadlines are present in many real bargaining situations and one would like to know how

deadlines influence the bargaining strategies and outcomes. In particular, we will be interested

in the case that the bargaining partners may have different deadlines and will investigate how

a particular agent’s bargaining behavior changes over time as his deadline comes closer. This

is especially relevant when bargaining is between parties who have the opportunity to start

negotiating with alternative partners. For example, in the real-estate market a house owner and

a potential buyer may negotiate over the price, but both parties can break off the negotiation

and start bargaining with alternative potential buyers or sellers. In financial over-the-counter

markets government, municipal, and corporate bonds, bank loans, and derivatives are traded

through bilateral bargaining.1 The possibility to break off negotiations becomes increasingly

important when there are many potential sellers and buyers who can contact each other without

too much friction. Our work is therefore also motivated by the large growth of person-to-person

trade facilitated by the internet.

We have several motives for considering deadlines as an alternative way of modelling time

1See, e.g., Duffie et al. (2005) and Vayanos and Wang (2007).
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preferences. First, deadlines are easy to understand. It is presumably easier for a person to state

by which date an agreement must be reached (say a month from now) than to make precise how

much he is willing to pay extra to have an agreement today rather than tomorrow, which is

basically what one needs to do in the case of standard discounting. Unemployment benefits

are temporary and a job searcher’s reservation wage will thus depend on how long he is still

entitled to it. Also, when people negotiate on behalf of a principal2 or a constituency3 they

are often given a firm deadline. Second, software agents that bargain on behalf of people using

the internet must often be programmed with a deadline in order to ensure the termination of

the protocol in which they take part.4 Finally, Merlo and Ortalo-Magné (2004) suggest that

deadlines of sellers may explain their empirical observation that list prices of real estate decline

over time, whereas other existing theories cannot explain that. Moreover, they observe that a

significant fraction of sellers who initially reject offers end up accepting a lower offer. We will

show that the existence of a deadline can indeed account for both observations.

This paper studies the interaction of large groups of buyers and sellers who arrive at an

exogenous rate to the market. Buyers and sellers are randomly matched into pairs and bargaining

takes place in each match about the division of the surplus. We assume that the size of the

surplus is fixed in order to focus on the effect of heterogeneous deadlines. Bargaining is modeled

by randomly picking one of the two traders in the pair and let him make a take it or leave it

offer. If an agreement is reached, the traders disappear with their gains from the market. If

there is no agreement, and a trader’s deadline has expired, the trader will disappear from the

market with no surplus. In the case of disagreement and a non-expiring deadline, the trader

returns next period in which he will again be matched, with a different partner. The deadline of

this trader has then been reduced by one. A trader with deadline i has in total i opportunities

to come to an agreement with his assigned partner. After i disagreements the trader receives

zero surplus and disappears from the market. We consider separately the cases where trading

partners do and do not observe each other’s deadline. Presumably, depending on the application

at hand, either case may be the relevant one. Our analysis allows for some comparisons.

Although entry is assumed to be exogenous and constant over time, the total mass of buyers

and sellers present in the market may change over time because exit is endogenous. On top

of that, the proportion of traders with short deadlines may change over time if traders with

2See for example, Burtraw (1992), Segendorff (1998) and Bester and Sákovics (2001).
3See Cai (2000).
4For example, Jennings et al. (1996) detail the application of ADEPT (Advanced Decision Environment for

Process Tasks) agents in British Telecom’s customer quote business process. Chavez and Maes (1996) consider
MIT’s Kasbah experiment (where agents bought and sold goods on behalf of people). In both cases deadlines
were central to the design of the bargaining agents. See also Sandholm and Vulkan (2000) for a general discussion
of the role of deadlines in e-commerce applications using software agents.
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short deadlines are more likely to come to agreements then traders with long deadlines, because

we do not assume that exiting traders are replaced by new traders of the same type. We will

be interested in the stationary state of the model, where the total mass of traders and the

relative frequencies of deadlines remain constant over time. This allows us to focus on how

the distribution of deadlines of the new traders flowing into the market affects the outcome of

bargaining, payoffs and the possible existence and length of delays.

We define and show the existence of a stationary equilibrium, both for the case of perfect

and imperfect information about the partner’s deadline. In the case of perfect information we

show that the equilibrium payoff is strictly increasing and strictly concave in deadline. We show

that it is possible that when traders with relatively long deadlines are matched they choose, in

equilibrium, not to trade and go back to the market in the next period. Matches in which at

least one trader has a short deadline end in agreement, therefore deadlines are never missed.

We characterize, in terms of the discount factor and the distribution of deadlines of traders

who flow into the market in every period, whether and when delay will occur. We examine the

comparative statics of our analysis and show that delay can occur frequently and can have a large

negative effect on welfare. For the case of imperfect information about the partner’s deadline,

we show that in an equilibrium without delay all traders achieve the same expected payoff. Such

an equilibrium exists if and only if the probability of meeting a trader with deadline 1 is below

some threshold. It does not depend on the relative frequency of higher deadlines. Hence, in

general one cannot say that delay is more likely under perfect or imperfect information. In an

equilibrium with delay expected payoffs are strictly increasing in deadline. Contrary to the case

of perfect information, deadlines may be missed altogether which then results in a large welfare

loss. Imperfect information about deadlines thus sometimes leads to a more efficient outcome

than perfect information, but it can also cause large welfare losses.

It is worth emphasizing that delay may exist even when there is perfect information in our

model, immediate agreement is always efficient, and there are no transaction or switching costs.

Most models of bargaining aimed at explaining the existence of delay are either based on the

assumption of imperfect information so that the passing of time can signal relevant information

about valuations, or they employ the multiplicity of equilibria to construct credible threats.5

Search and matching models that explain delay and inefficiencies rely heavily on the presence

of positive transaction or switching cost. When frictions disappear, the search and bargaining

5See Sobel and Takahashi (1983) and Admati and Perry (1987) for examples of delay through signalling and
Haller and Holden (1990) and Sákovics (1993) for examples of delay through threats using multiplicity of equilibria.
Exceptions are, among others, Merlo and Wilson (1995) in an environment where the bargaining set changes over
time in a stochastic manner and Fershtman and Seidmann (1993) who allow for endogenous commitments to not
accept proposals that are worse than previously rejected proposals.
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outcome usually converges to the competitive outcome. 6

The rest of the paper is organized in the following way: Section 2 presents the model. In

section 3 we define and show existence of stationary equilibrium configurations and analyze

their properties under the assumption that bargaining takes places under perfect information

about deadlines. We also discuss how the model and results are extended to the case where

the numbers of buyers and sellers, as well as the distributions of deadlines of buyers and sellers

are asymmetric. In section 4 we do a similar exercise under the assumption that bargaining

takes place under imperfect and private information. We discuss related literature in section 5.

Section 6 concludes. Proofs are collected in the Appendix.

2 The Model

We consider a model with a continuum of sellers and buyers (of mass 1 each7) flowing into the

market every period. All sellers have one unit of a good they produced at zero cost and all

buyers have unitary demands for this good, which they all value at one. The only difference

between different traders is their deadline. The deadline of a trader is an integer number from

{1, 2, ..., N} that indicates how many periods are remaining for this trader to conclude a deal. If

a trader fails to conclude a deal at the last opportunity he misses his deadline and his utility is

zero. That is, a trader with deadline 1 will have to make a deal immediately or his opportunity

will be lost. Such a trader will accept any deal that gives him a positive utility. On the other

hand, traders with a long deadline will be able and willing to reject certain deals and wait for

better opportunities in the future.

We assume that proportion pi of the sellers (buyers) that flow into the market place every

period has deadline i. The procedure for closing trades is as follows: in each period t ∈ Z each

buyer is matched with a seller. One trader in each pair is chosen at random and becomes the

proposer (with probability one half). This trader makes a proposal which can be accepted or

rejected. In the first case trade takes place and traders disappear from the market. In the

second case no trade takes place and both traders go back to the market and become matched

next period (with different partners), as long as their deadline has not expired. Of course, their

deadline will then be reduced by one.

We will be interested in the steady state or stationary equilibrium, which will be defined

formally below. A stationary equilibrium is an equilibrium where all buyers (sellers) with the

6For exceptions, see Serrano (2002) and Shneyerov and Wong (2010a).
7Our model and results are readily extended to allow for unequal numbers of buyers and sellers, and also for

asymmetric distributions of deadlines for buyers and sellers. In order to save on notation and to improve the
exposition, we postpone discussion of the more general model to section 3.5 and confine ourselves here to the
symmetric case.
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same deadline make and accept the same proposals (independent of the time period t) and

where the mass of traders in the market place and the distribution of deadlines among the

buyers (sellers) (denoted by q) remains constant over time. There are two different equilibria

possible. In the first, which we will refer to as the no delay case, trade occurs in each matching.

In this case the stationary distribution q of deadline types is simply given by p. In the second,

which we will refer to as the delay case, there is no trade taking place in some matches. In this

case the stationary distribution q will be different from the inflow distribution p.

We will assume that traders discount late trades by a factor δ ≤ 1. It will become clear later

on that the role of the discount factor is not as important as in standard bargaining models.

The reason is that traders with longer deadlines will close better deals than traders with shorter

ones. This gives traders an incentive to make deals early, even when the discount rate is equal

to one. However, if we do not discount utilities, there is no cost of having delay, as long as

deadlines are never missed.

3 Equilibrium Analysis under Perfect Information about Dead-

lines

In this section we will assume that the traders within a match learn each other’s deadline before

bargaining starts. A pure strategy for a trader thus must specify the offers he makes when chosen

as a proposer and the offers he accepts as a responder, both as a function of his own deadline, as

well as of his trading partner’s deadline. We will restrict our attention, as is quite standard in

the search and matching literature, to stationary equilibrium, which simplifies the analysis.8 In

a stationary equilibrium the mass of traders and the distribution of deadlines remains constant

over time. Moreover, strategies are time and history independent.

Given the assumed symmetry between both sides of the market, we do not need to distinguish

between sellers and buyers and will just refer to both as traders. A stationary equilibrium is

to a large extent characterized by the expected equilibrium payoff wi of a trader with deadline

i = 1, ..., N , because these equilibrium payoffs determine reservation values for responders which

in turn determine optimal proposal strategies.9 That is, responder j will accept offers strictly

above and reject offers strictly below δwj−1. Moreover, proposer i will offer responder j exactly

δwj−1 if he prefers this offer to be accepted (and receiving 1 − δwj−1) over getting wi−1 next

period. Only when δ(wi−1 + wj−1) = 1, it is not obvious whether agreement between traders i

8There are some exceptions though. Manea (2012) analyzes matching and bargaining models where inflow
distributions are not necessarily stationary.

9For convenience we denote w0 = 0.
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and j will obtain or not. The probability of agreement will have to be explicitly specified because

it will feed back into the (stationary) distribution and it cannot be deduced from equilibrium

payoffs only.

To be more precise, if there is a strictly positive surplus to divide (that is, when δ(wi−1 +

wj−1) < 1), agreement will be reached for sure and the proposer will extract the full surplus.

Namely, a responder with deadline j must accept any proposal that gives her strictly more than

δwj−1. In equilibrium she must then also accept a proposal of exactly δwj−1 with probability

1, because the proposer can guarantee acceptance with probability one by just offering slightly

more to the responder.

If there is no mutually beneficial agreement possible (that is, when δ(wi−1 +wj−1) > 1), no

agreement will result. Either the responder is offered strictly less than δwj−1 (which is of course

rejected) or she is offered exactly this amount, but she still rejects it with probability equal to

1.10

Finally, in the knife-edge case that δ(wi−1 + wj−1) = 1 there is of course only one possible

agreement. Such an agreement must give both parties exactly their disagreement payoff. Both

parties will be indifferent as to whether such a proposal would be accepted or not. In particular,

the proposer is not willing to offer anything more to the responder, so he cannot guarantee

acceptance. What is important for the equilibrium outcome is the probability that agreement

will take place in this case, because it influences the stationary distribution of types. We will

denote this probability by Aij .
11

3.1 Definition and existence of equilibrium

As explained before, a strategy profile is characterized by a vector of expected payoffs w =

(w1, ..., wN ) and a matrix A of acceptance probabilities. The interpretation is that a proposer

with deadline i offers δwj−1 to a responder with deadline j, and this responder accepts this

proposal with probability Aij . (And he would accept any better proposal and reject any worse

proposal with certainty.) It will be convenient to explicitly include in our formal definition of

a stationary subgame perfect equilibrium configuration12 the vector z = (z1, ..., zN ), where zi

denotes the mass of traders with deadline i.

Definition 1 A triple (z, w,A) is a stationary subgame perfect equilibrium configuration if the

10The responder would be indifferent between accepting and rejecting but the proposer would not be willing to
make that proposal if he expected it to be accepted with positive probability.

11One should realize that payoffs arise endogenous in this model and one cannot rely on generic inflow distri-
butions or discount factors to avoid this case of double indifference.

12We do not use the term stationary subgame perfect equilibrium, as that would implicitly refer to strategies.
As argued above, the strategies cannot always be pinned down exactly.
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following conditions hold:

Acceptance Probabilities A is an N×N symmetric matrix with Aij = 1 if δ(wi−1+wj−1) <

1, Aij = 0 if δ(wi−1 + wj−1) > 1 and Aij ∈ [0, 1] otherwise.

Stationarity zN = pN ; zi = pi + zi+1(
∑

j qj(1−Ai+1j)) where qj = zj/
∑N

k=1 zk

Expected Payoffs wi =
1
2δwi−1 +

1
2

(∑N
j=1 qj [Aij(1− δwj−1) + (1−Aij)δwi−1]

)
for all i.

The first condition simply reflects our previous discussion about whether agreement will take

place or not. Only in the case that both traders in the match are indifferent with respect to

acceptance, we allow for interior probabilities of acceptance. The stationarity condition simply

says that, when traders follow the strategies given by (w,A), then the mass of traders with

deadline i will remain constant at zi. Namely, it will be equal to the sum of new traders with

deadline i and old traders with deadline i + 1 who did not come to an agreement. Finally, the

last condition describes the relation between the expected equilibrium payoffs for traders with

different deadlines, by linking bargaining outcomes with the endogenous disagreement points:

A responder with deadline i obtains always δwi−1 (either because that is what is exactly offered

and accepted or because an unacceptable offer is refused). A proposer with deadline i will obtain

1− δwj−1 if the proposal is accepted and δwi−1 otherwise.

We first establish the existence of a stationary subgame perfect equilibrium configuration.

Proposition 2 For any inflow distribution p and any discount factor δ ∈ (0, 1] there exists a

stationary subgame perfect equilibrium configuration.

3.2 Properties of the equilibrium

Proposition 3 In any stationary subgame perfect equilibrium configuration expected payoffs are

strictly increasing and strictly concave in the deadline.

An immediate implication of the fact that equilibrium payoffs are strictly increasing in dead-

line is that the probability of proposals being accepted is weakly decreasing both in the proposer’s

and in the responder’s deadline. In particular, increasing the deadline of both traders by one

(and thus increasing the average deadline by 1, leaving the absolute difference between the dead-

lines the same) will weakly reduce the probability of agreement. The next Corollary obtains a

much stronger result and reveals thus a bit more about the structure of equilibria, by using the

fact that equilibrium payoffs are strictly concave in deadline. Namely, it states that the prob-

ability of agreement is weakly increasing in the absolute difference between the two deadlines,

when keeping the average of the deadlines constant. So, for example, if the pair of traders with
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deadlines (3, 4) agrees, then the pair of traders with deadlines (2, 5) must agree as well. And if

the pair of traders (3, 5) does not agree, then the pair of traders (4, 4) does not either. Recall

that A is symmetric and therefore it is enough to consider entries Aij on or above the diagonal.

Corollary 4 Let δ < 1 and let (z, w,A) be a stationary subgame perfect equilibrium configura-

tion. Then A1j = Ai1 = 1 for all i and j. Also, A22 = 1. Moreover, for any two pairs of traders

(i, j), with 1 < i ≤ j < N − 1, the following implications hold:

(i) If traders i and j disagree with positive probability (i.e., Aij < 1), then traders i+ 1 and

j − 1 disagree for sure (i.e., Ai+1,j−1 = 0).

(ii) If traders i+1 and j− 1 agree with positive probability (i.e., Ai+1,j−1 > 0), then traders

i and j agree with probability 1 (i.e., Aij = 1).
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Figure 1: Illustration of Corollary 4.

Agreements are immediate (indicated in Fig. 1 by a “+”) when at least one of the partners

has an immediate deadline (that is, in the first row and column), or when both have deadline

2, but delay (indicated by “−”) may occur when both traders have a more distant deadline.

Moreover, when traders (3, 4) agree (and thus δ(v2 + v3) ≤ 1), then traders (2, 5) must agree as

well, because concavity implies that δ(v1 + v4) < δ(v2 + v3) ≤ 1. Finally, when traders (3, 5)

disagree (and thus δ(v2 + v4) ≥ 1), then traders (4, 4) must disagree as well, because concavity

implies that δ(v3 + v3) > δ(v2 + v4) ≥ 1. This means for the example at hand in Fig. 1, that
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if one would know that (or if one looks for an equilibrium in which) the pair (3, 4) will agree

while the pair (3, 5) will disagree, then for all other pairs, except the pair (2, 6), it is already

determined whether their match will end in agreement or disagreement. We use this Corollary

for constructing examples in Section 3.4.

3.3 (Non-)existence of delay

In this subsection we investigate the necessary and sufficient conditions for the existence of

an equilibrium without delay, that is, a stationary subgame perfect equilibrium configuration

(z, w,A) where Aij = 1 for all pairs (i, j). We also characterize the equilibrium strategies

precisely for such an equilibrium configuration, and we perform comparative statics exercises.

It is immediate from Definition 1 that no delay implies that z = p = q. That is, the stationary

distribution of deadlines coincides with the inflow distribution. This is rather intuitive because

the no delay assumption implies that no trader remains in the market for more than one period

in such an equilibrium.

Suppose there exists a stationary subgame perfect equilibrium configuration without delay.

To emphasize the distinct case of no delay, we let vi(p, δ)(= wi) denote the expected payoff

a trader with deadline i obtains in this equilibrium. When no confusion results we will omit

arguments p and δ. (Again, for convenience we denote v0 = 0.) In an equilibrium without delay,

the final condition of Definition 1 reads

vi =
1

2
δvi−1 +

1

2

 N∑
j=1

pj(1− δvj−1)

 .

Note that the term between brackets on the right-hand side, which reflects the payoff conditional

on being a proposer, does not depend on i, the deadline of the proposer. In particular, because

v0 = 0, the payoff conditional on being a proposer equals 2v1. It follows immediately that for

i > 1

vi =
1

2
δvi−1 +

1

2
(2v1) (1)

because with probability 1/2 trader i is offered δvi−1 and with probability 1/2 he obtains the

same payoff that a trader with deadline 1 gets, conditional on being the proposer. It follows

that

vi = v1(1 +
1

2
δ + ...+ (

1

2
δ)i−1) = v1(1− (

1

2
δ)i)/(1− 1

2
δ). (2)

Note that v1 > 0 because otherwise we must have vi = 0 for all i, which is impossible. It

follows thus from (2) that vi+1 > vi for all i. Also note that v1/vN > 1/2. Let v denote
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the expected payoff before knowing one’s type. Let vij denote the expected payoff of trader

i conditional on being matched with a trader with deadline j (before knowing whether one is

proposer or responder). Because all matches end in agreement, vij + vji = 1. We also have

v =
∑

i,j pipjvij =
∑

j,i pjpivji, so that 2v =
∑

i,j pipj(vij + vji) = 1, and v = 1/2. Hence,

1

2
=

N∑
i=1

pivi = v1

N∑
i=1

pi(1 +
1

2
δ + ...+ (

1

2
δ)i−1). (3)

Hence,

v1 =
1/2∑N

i=1 pi(1 +
1
2δ + ...+ (12δ)

i−1)
=

1− 1
2δ

2WA(p, δ)
, (4)

where

WA(p, δ) =

N∑
i=1

pi(1− (
1

2
δ)i) (5)

denotes a weighted average of powers of (δ/2). WA(·, δ) defines a dominance order on probability

distributions, similar to well-known concepts as first- and second order dominance. In fact, if

p′ first- or second order dominates p, then WA(p′, δ) > WA(p, δ).13 Note that the expression

for the payoff of the type with deadline 1 in an equilibrium without delay only depends on the

inflow distribution p insofar as it affects this weighted average WA(p, δ). We use this result

to establish lower and upper bounds on the payoffs that can be obtained in equilibria without

delay.

Proposition 5 In an equilibrium without delay, the expected equilibrium payoff of a trader with

deadline j equals

vj(p, δ) =
1− (12δ)

j

2
∑N

i=1 pi(1− (12δ)
i)
. (6)

Moreover, in an equilibrium without delay v1 > 1/4, vN < 3/4 and vN < 2v1.

We know from Corollary 4 that a necessary and sufficient condition for the existence of an

equilibrium without delay is that two traders with deadline N have no incentive to disagree,

that is, 2δvN−1 ≤ 1. It is thus clear that δ ≤ 2/3 is a sufficient condition for the existence of an

equilibrium without delay, because then 2δvN−1 < 2δvN ≤ 2(2/3)(3/4) = 1.

More accurately, a necessary and sufficient condition for the existence of an equilibrium

configuration without delay is given by the following Proposition.

13This follows from the fact that h(i) = 1 − (δ/2)i is an increasing and concave function of i, together with a
well-known property of second-order stochastic dominance.
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Proposition 6 There exists an equilibrium without delay if and only if

δ

(
1− (

1

2
δ)N−1

)
≤WA(p, δ). (7)

In this case there is exactly one equilibrium without delay. In this equilibrium, a responder of

type j accepts any offer x ≥ δvj−1 (and rejects any other offer) whereas a proposer of type i

proposes exactly δvj−1 to a trader of type j, where vj is as defined in Proposition 5.

It follows immediately from our equilibrium existence result in Proposition 2 and the pre-

vious Proposition that an equilibrium with delay must exist whenever no equilibrium without

delay exists. This leaves open the hypothetical possibility that for some parameters both an

equilibrium without and an equilibrium with delay exists. We have not found any example

where this occurs, and we strongly conjecture that this can never happen.14

Corollary 7 In case the inequality in (7) is not satisfied, there exists an equilibrium with delay.

We have observed that δ ≤ 2/3 is a sufficient condition for an equilibrium configuration

without delay to exist. Hence, for delay to exist in the unique equilibrium, the discount factor

δ should not be too low. This is at first sight surprising as in standard models of decentralized

trade, disagreement decreases as the delay cost decreases (e.g. Mortensen and Wright, 2002),

whereas here the opposite occurs. What happens in the standard models is that there exists

both a waiting cost (represented by a low discount factor) and a small participation cost of

being active. If all trades were to take place at the competitive price, traders with supramarginal

values15 would not even participate and all matches would end in agreement. However, if waiting

is costly, the participating traders would be willing to buy (sell) at a slightly higher (lower) price.

This in turn attracts the supramarginal traders to the market. But when two supramarginal

traders meet, no agreement is possible and thus delay occurs when the waiting cost is relatively

high. In the current model, all traders can make strictly positive profits from trade and no one

would be driven out of the market by small transaction costs.

An interesting feature of our model is that heterogeneous deadlines can arise endogenously

in the stationary state even if the inflow distribution does not have much heterogeneity. For

example, if the inflow distribution only contains traders with deadlines 1 and N > 2 and is such

14For example, it is impossible to have an equilibrium without delay (z, w,A) where z = p and Aij = 1 for
all i, j, and, for the same parameters δ and p, an equilibrium in which traders with deadline N disagree with
positive probability less than 1. The latter would yield a stationary distribution q with WA(q, δ) < WA(p, δ).
Moreover, it is easily established that for an inflow distribution q, there would exist an equilibrium without delay
with exactly the same payoffs as in the equilibrium with delay. (Such payoffs would satisfy the third condition of
the Equilibrium definition.) However, because WA(q, δ) < WA(p, δ), the latter equilibrium without delay would
yield any type of trader a strictly higher payoff than the original equilibrium without delay, and this is impossible.

15That is, buyers with a value below and sellers with a cost above the competitive price.

11



that delay must occur, then traders with deadline N − 1 (and possibly lower ones) will arise in

equilibrium. Moreover, if there is some friction in the matching process so that not all traders

are matched in each period, heterogeneous deadlines will appear in equilibrium even if all new

traders have the same deadline N . This must necessarily occur if there are more buyers than

sellers, for example. Some buyers may not find a match during N − j ≤ N periods and will then

have a deadline of j. On the other hand, it is not possible for delay to occur when all traders

are homogeneous and there are no frictions in the matching process. If all traders have deadline

N and all are matched, the only reason for disagreement in a match between two deadline N

types, is that they expect to get at least one half each in terms of discounted expected payoffs.

But if δvN−1 ≥ 1/2, then vN > 1/2. This would mean that all future generations of traders

expect to get strictly more than half of the potential surplus. This is not sustainable and can

thus not occur in a stationary subgame perfect equilibrium configuration.

3.4 Comparative statics and numerical examples

From the necessary conditions for the existence of an equilibrium without delay in Proposition

6 we obtain immediately

Corollary 8 Suppose there exists a stationary subgame perfect equilibrium configuration without

delay when the inflow distribution is p = (p1, ..., pN ) (where pN > 0) and the discount factor

equals δ.

(i) Let p′ first-order stochastically dominates p. When the distribution shifts from p to p′, a sta-

tionary subgame perfect equilibrium configuration without delay still exists and vj(p
′, δ) <

vj(p, δ) for all j.

(ii) Let p′ second-order stochastically dominates p. When the distribution shifts from p to

p′, a stationary subgame perfect equilibrium configuration without delay still exists and

vj(p
′, δ) < vj(p, δ) for all j.

(iii) When the discount factor decreases from δ to δ′, there still exists a stationary subgame

perfect equilibrium configuration without delay. Moreover, the difference in payoff ∆j =

vj(p, δ
′)− vj(p, δ) is decreasing in j. In particular, ∆1 > 0 and ∆N < 0.

(iv) Suppose that all traders in the inflow distribution have either deadline N or N − 1. Then

there exists a unique stationary subgame perfect equilibrium configuration, and there is no

delay in it.
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These results are quite intuitive and straightforward. Results (i) and (ii) follow from the

observation that WA(p′, δ) ≥ WA(p, δ) when p′ first- or second-order stochastically dominates

p. Delay is more likely to occur when deadlines are more heterogenous, that is when the inflow

distribution is more risky. The fact that in equilibria without delay average payoff remains

the same (at one half) whereas all types of traders suffer from a shift from p to p′ seems odd

at first but is just an instance of Simpson’s paradox: all payoffs are reduced but when more

weight is placed on the (higher) ones for high deadline traders, the average does not change.

Result (iii) follows from the observation that WA(p, δ) is decreasing in δ. Delay is less likely to

occur when it is more costly. When the discount factor is close to zero, all traders get similar

payoffs. An increase of the discount factor strengthens the bargaining position of traders with

long deadlines and weakens it for those with short ones, and thus increases the payoff inequality

between different traders.

The corollary indicates that equilibrium configurations with a positive amount of delay can

exist only if both (i) a sufficiently large proportion of traders has a short deadline and (ii) there

are traders that are sufficiently patient. Traders with a high deadline are then likely to be

matched with traders with short deadlines, and are thus willing to wait when by bad luck they

are matched with other traders with high deadlines. On the other hand, when many traders have

short deadlines, the probability of delay will be small. Also, when traders have a high discount

factor, the cost of delay is rather small. In order to get some more insight in the probability

and cost of delay caused by heterogeneous deadlines, we will consider a special case with inflow

distribution putting positive weight only on deadlines 1 and 3. We will first illustrate how the

amount of delay and payoffs in the equilibrium configuration varies with the discount factor.

Then we will consider how these measures vary with the inflow distribution. In these examples

equilibrium configurations are unique: we have looked for all equilibria with any of the possible

delay configurations consistent with Corollary 4, and always found exactly one.

Example 1. Suppose N = 3 and the inflow distribution is p = (0.75, 0, 0.25). For any

discount factor δ ∈ [0, 1] there exists a unique stationary subgame perfect equilibrium config-

uration. The amount of delay increases in δ. There exist thresholds δ1 ≈ 0.813, δ2 ≈ 0.822,

δ3 ≈ 0.963, and δ4 ≈ 0.964 such that the stationary subgame perfect equilibrium configuration

is characterized by

• For δ < δ1, there is no delay at all.

• For δ ∈ (δ1, δ2), there is random delay only between two traders who have deadline 3.

• For δ ∈ (δ2, δ3), there is deterministic delay between two traders who have deadline 3.
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Figure 2: Equilibrium payoffs for the three types, and average payoff for new trader.

• For δ ∈ (δ3, δ4), there is deterministic delay between two traders who have deadline 3 and

random delay between traders with deadlines 2 and 3.

• For δ > δ4, there is deterministic delay between traders with deadlines 2 and 3, and

between traders with deadlines 3 and 3.

Fig. 2 plots the payoffs of the three different types in the stationary subgame perfect equi-

librium configuration as a function of the discount factor. At δ = 0 the payoffs coincide because

this effectively means that every trader must make an agreement immediately. As the discount

factor increases, the payoffs diverge in the region where no delay occurs. In the regions where

in some pairs the probability of agreement is strictly between 0 and 1, payoffs decrease, even

when the discount factor increases.16 Average payoff is non-monotonic in δ: It equals one half

when δ is small (no delay) and when δ = 1 (costless delay). In an intermediate region average

payoff is below one half because there is costly delay.

Example 2. Let N = 3 and δ = 0.98. For any inflow distribution p = (p1, 0, 1 − p1) there

exists a unique stationary subgame perfect equilibrium configuration. Even though WA(p, δ)

is monotonically decreasing in p1, neither the amount of delay nor the average payoff of new

traders flowing into the market is monotonic in p1. There exist thresholds ρ1 ≈ 0.37, ρ2 ≈ 0.382,

ρ3 ≈ 0.7247, and ρ4 ≈ 0.7252 such that the stationary subgame perfect equilibrium configuration

is characterized by

• For p1 < ρ1, there is no delay at all.

16This happens for δ ∈ (δ1, δ2) and δ ∈ (δ3, δ4). The latter is difficult to notice in the graph because the interval
is very short.
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Figure 3: Total mass of buyers (or sellers) (top) and average equilibrium payoff of a new trader
(bottom) when inflow distribution equals p = (p1, 0, 1− p1) and δ = 0.98.

• For p1 ∈ (ρ1, ρ2), there is random delay only between two traders who have deadline 3.

• For p1 ∈ (ρ2, ρ3), there is deterministic delay between two traders who have deadline 3.

• For p1 ∈ (ρ3, ρ4), there is deterministic delay between two traders who have deadline 3

and random delay between traders with deadlines 2 and 3.

• For p1 > ρ4, there is deterministic delay between traders with deadlines 2 and 3, and

between traders with deadlines 3 and 3.

Fig. 3 plots the expected equilibrium payoff of a new trader flowing into the market, and

the total mass of traders in equilibrium. In the regions where a pure equilibrium exists (that

is, where agreements in a pair occur with probability 0 or 1), the average payoff is increasing

in p1. Clearly, a higher probability of being matched with a deadline 1 trader improves the

average payoff. However, in the region where some agreements occur with probability strictly

between 0 and 1 average payoffs are decreasing. In this region the mass of traders with deadline

2 increases sharply, which reduces the proportion of deadline 1 traders, which has a negative

effect on average payoffs. Clearly, the highest average payoff of 0.5 is obtained when there is no

delay (p1 < ρ1) or when all traders have deadline 1 (p1 = 1). The largest mass of traders occurs

at p1 = ρ2 where there is deterministic disagreement only between traders with deadline 3.

3.5 Asymmetric markets

We have assumed throughout the section that the number of sellers and buyers flowing into the

market is the same. We also assumed that the distribution of deadlines is the same for buyers
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and sellers. This symmetry assumption allowed us to simplify the exposition. However, in order

to study the effects of a change in the mass or the type distribution on one market side, we need

to study asymmetric markets. In this subsection we discuss briefly how this can be done. We

restrict attention to equilibrium configurations without disagreements and show how payoffs are

affected by such changes on one side of the market.

Let pSi denote the mass of sellers with deadline i flowing into the market, and let (1 + b)pBj

denote the mass of buyers with deadline j flowing into the market. Without loss of generality

we may assume that b ≥ 0,
∑NS

i=1 p
S
i = 1 and

∑NB
j=1 p

B
j = 1. If b > 0 then the buyers form the

long side of the market. We will assume that then each seller will be matched with one buyer.

Obviously, in this case there will always be buyers who will not get matched in any single round.

That means that there will certainly be buyers who will not immediately close a deal. In fact

some buyers will miss their deadline, because they may never be matched with a seller before

their deadline expires. However, we will be interested in the possibility of delay on the (short)

side of the sellers. That is, will there be disagreement in some pair of matched traders?

The definition of a stationary subgame perfect equilibrium configuration can be generalized

in a straightforward manner. Namely, it will be a tuple (zB, zS , wB, wS , E), where zBj and

zSi denote the mass of buyers (sellers) with deadline j (i) and where wB
j and wS

i denote the

expected payoff of a buyer (seller) with deadline j (i). The NB × NS matrix E indicates the

probability of agreement in a pair where buyer j and seller i are matched. If
∑NS

i=1 z
S
i = 1 + T

and T > 0, there will be delay among sellers. The stationarity condition for buyers must now

take into account not only that some buyers remain from the previous period because they

made or rejected unacceptable proposals, but also those buyers who were not matched in the

last period. If B denotes the mass of buyers in a stationary state, the probability of not being

matched equals 1− (1 + T )/B.

The existence of a stationary subgame perfect equilibrium configuration can be shown, but

we omit the proof. In this section we will restrict ourselves to analyzing equilibria without

disagreements. We will derive the necessary condition for existence of such an equilibrium

configuration and we perform comparative statics on the payoffs of traders in such a configuration

with respect to b and with respect to the distribution of deadlines.

Let (zB, zS , wB, wS , E) be a stationary subgame perfect equilibrium configuration in which

agreement occurs in all pairs formed. Then obviously zSi = pSi for all i and
∑NS

i=1 z
S
i = 1. The

stationary distribution in an equilibrium configuration without disagreements obviously satisfies

qSi = pSi .
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On the other hand, for buyers we have zBNB
= (1 + b)pBNB

and for j < NB we have

zBj = (1 + b)pBj + zBj+1(1− 1/B),

where B =
∑NB

j=1 z
B
j . It follows that

zBj
b+ 1

=

NB∑
k=j

pBk (1− 1/B)k−j .

Summing over all zBj , one obtains B = 1+ b+(B− zB1 )(1− 1/B). It is thus easily verified that,

for given and fixed b, B can be computed as the unique root of

NB∑
j=1

pBj (1− 1/B)j = b/(b+ 1).

Note that if b = 0, B = 1 whereas if b > 0, B > 1. (In fact, B > b + 1 as long as pB1 < 1.)

The stationary distribution of deadlines of buyers will now differ from the inflow distribution

whenever b > 0. Namely, qBj = zBj /B. In particular, qBNB
< pBNB

when b > 0.

Note that the expected payoff of a seller with deadline i+1 satisfies wS
i+1 =

1
2δw

S
i + 1

2(2w
S
1 ),

as the first term reflects the payoff as a responder, and the second term reflects the payoff as a

proposer, which is the same for all sellers. Hence, as before, we have

wS
i = wS

1

1− (δ/2)i

1− δ/2
.

Similarly, the expected payoff of a buyer with deadline j + 1 (before knowing whether he will

be matched or not) satisfies wB
j+1 = δwB

j (1− 1/(2B)) + 1/(2B)(2B)wB
1 . It follows that

wB
j = wB

1

1− [(1− 1
2B )δ]j

1− (1− 1
2B )δ

.

Of course, we also have

wS
1 =

1

2

NB∑
j=1

qBj (1− δwB
j−1)

and

wB
1 =

1

2B

NS∑
i=1

qSi (1− δwS
i−1).

Equal mass, different distributions.

Let us now consider the special case where the mass of buyers and sellers is the same (i.e.
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b = 0 and B = 1) but where the distributions of deadlines of buyers and sellers are distinct.

It is straightforward to establish the following result about the payoffs that different traders

get, conditional on playing an equilibrium configuration without delay.

Proposition 9 In an equilibrium configuration without delay, the payoffs of different traders is

given by

wS
1 =

(2− δ)(2− δ −WA(pB, δ))

2((2− δ)(WA(pB, δ) +WA(pS , δ))− 2WA(pB, δ) WA(pS , δ))

wB
1 =

(2− δ)(2− δ −WA(pS , δ))

2((2− δ)(WA(pB, δ) +WA(pS , δ))− 2WA(pB, δ) WA(pS , δ))

wS
i = wS

1

1− (δ/2)i

1− δ/2

wB
i = wB

1

1− (δ/2)i

1− δ/2
.

It follows that
wS
i

wB
i

=
2− δ −WA(pB, δ)

2− δ −WA(pS , δ)
.

Hence, wS
i > wB

i if and only if WA(pS , δ) > WA(pB, δ). In particular, sellers make higher

profits than buyers when the distribution of deadlines of sellers first- or second-order dominates

the distribution of deadlines of buyers. In other words, it is advantageous to belong to the side

of the market with higher and more dispersed deadlines.

The existence of an equilibrium configuration without delay requires that δ(wS
N−1+wB

N−1) ≤

1. This condition can be rewritten as

δ(1− (δ/2)N−1) ≤ (2− δ)(WA(pB, δ) +WA(pS , δ))− 2WA(pB, δ) WA(pS , δ)

4− 2δ − (WA(pB, δ) +WA(pS , δ))
.

Equal distributions, different mass.

We now consider the case where the distribution of deadlines is the same for buyers and

sellers, but where one side of the market (buyers) has more participants.

It is clear that when the ratio of buyers to sellers converges to infinity, the probability of

being matched goes to zero for buyers, so that the expected payoffs for buyers, independently

of their deadline, will converge to zero as well. In this case the payoff of a seller with deadline

i converges to 1
2
1−(δ/2)i

1−δ/2 . In particular, the most patient seller receives a payoff of at most

1− (1/2)N < 1. It is thus also clear that an equilibrium configuration where all matches end in

agreement exists and is in fact the unique equilibrium configuration. It follows from the above

considerations that for b large enough, all matches end in agreement.
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4 Equilibrium Analysis under Private Information about Dead-

lines

Thus far we assumed that traders within a match know each other’s deadline, so that bargaining

is under perfect information. In this section we assume that each trader only knows his own

deadline, but not the one of his matched partner. This naturally affects the strategies available

to a trader. Given our restriction to stationary subgame perfect equilibrium configurations, a

pure strategy of a trader must specify the offer she will make and the offers she will accept when

her own deadline is i. For a given stationary distribution of deadlines, q, and for given traders’

strategies, one can compute the expected payoffs for a trader with deadline i. We will denote

this by vi. Note that because a trader with deadline i + 1 can mimic one with deadline i, we

must have vi ≤ vi+1.

In a stationary equilibrium state it must be that a trader with deadline i accepts any proposal

that gives her x > δvi−1 and rejects any proposal that gives her x < δvi−1, where v0 = 0. When

the proposal is exactly equal to δvi−1, the responder is indifferent and, in principle, may use

a mixed strategy. However, when the responder is indifferent and accepts with probability

strictly less than one, the proposer (with deadline j) could deviate and offer slightly more,

which would then be accepted for sure. If this is profitable for the proposer, it must be the case,

in equilibrium, that the indifferent responder accepts δvi−1 with probability 1. On the other

hand, if the proposer does not gain from offering slightly more, it must be the case that the

proposer is in fact indifferent between the responder accepting or rejecting. This implies that

1− δvi−1 = δvj−1. (Note that this cannot happen when i = 1.) But in this case it is profitable

for the proposer to make a strictly lower proposal δvk−1 < δvi−1. In particular, offering the

largest δvk−1 < δvi−1 will be a strict improvement. Hence, in an equilibrium configuration, it

must be the case that any equilibrium proposal is accepted with probability one by responders

that are indifferent.

The proposals that are made in a stationary equilibrium state must be in the set X =

{δv0, . . . , δvN−1}. Namely, offers strictly above δvi−1 will be accepted for sure by a trader

with deadline i or lower, and therefore it is never optimal for a proposer to make such offers.

Because it is possible that vi = vj for some i ̸= j, we will write also X = {x1, . . . , xn} with the

understanding that xk < xk+1. It turns out that we will have to allow for proposers randomizing

between different proposals. Let ∆(X) denote the set of probability distributions on a finite set

X.

We are now ready to formally define a stationary subgame perfect equilibrium configuration

for the case where deadlines are private information.
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Definition 10 We call (z, v, s) = ((z1, ...., zN ), (v1, ..., vN ), s) ∈ ℜN
+ ×ℜN

+ ×∆(X)Na stationary

subgame perfect equilibrium configuration if the following holds:

Stationarity zN = pN and for all i < N

zi = pi +
1

2
zi+1

∑
k

si+1(xk)
∑

j:δvj−1>xk

qj

+
1

2
zi+1

∑
j

qj ∑
k:δvi>xk

sj(xk)


where qi = zi/(1 + T ).

Expected Payoffs For all i

vi =
1

2

∑
k

si(xk)
(1− xk)

∑
j:δvj−1≤xk

qj + δvi−1

∑
j:δvj−1>xk

qj


+
1

2

∑
j

qj

[∑
k

max{δvi−1, xk}sj(xk)

]
.

Proposal Probabilities

si(xk) > 0 implies xk ∈ argmaxxl
{(1− xl)

∑
j:δvj−1≤xl

qj + δvi−1
∑

j:δvj−1>xl
qj}.

The stationarity condition and the expected payoff condition are similar to the case of bar-

gaining under perfect information. The acceptance probabilities condition under perfect infor-

mation is replaced here by one of proposal probabilities. It states that only offers that maximize

a proposer’s expected payoff can be chosen with positive probability. We need the possibility of

random proposals in order to show the existence of an equilibrium configuration, employing the

Kakutani fixed point theorem.

Proposition 11 For any inflow distribution p and any discount factor δ ∈ (0, 1] there exists a

stationary subgame perfect equilibrium configuration.

Characterizing no-delay equilibrium configurations is straightforward in the case of bargain-

ing under imperfect information.

Proposition 12 For N > 1 there exists a stationary subgame perfect equilibrium configuration

with vi = v for all i if and only if p1 ≤ 2(1 − δ)/(2 − δ). In this case v = 1/2 and no delay

occurs.

The intuition for this result is as follows. If all traders obtain the same payoff in equilibrium,

this payoff must equal one half and all proposers offer δ/2. Given those proposer strategies, only

a responder with deadline 1 would accept (any) offer below δ/2. But when the probability of
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being matched with a trader with deadline 1 is sufficiently small, it is not optimal to make a

very greedy offer of zero.

Proposition 13 Suppose 1 > p1 > 2(1 − δ)/(2 − δ). In any stationary subgame perfect equi-

librium configuration there will be delay. The payoffs are strictly increasing in deadlines. There

exist inflow distributions for which deadlines will be missed in equilibrium.

The intuition for this result is as follows. When the probability of being matched with a

trader with deadline 1 is sufficiently high, it is optimal for the trader with the highest deadline

to make the greedy zero offer, which will only be accepted by traders whose deadline is about

to expire. Thus, in this case delay occurs whenever a trader with the highest deadline is chosen

as the proposer and is being matched with a trader with a deadline that is not about to expire.

This in turn implies that a trader with deadline i+1 will obtain a strictly higher expected payoff

than a trader with deadline i, as the first can mimic the latter for i periods, but refuse the greedy

offer in the i-th period. He will then have one extra opportunity to obtain a strictly positive

payoff. Of course, the condition in the Proposition is equivalent to δ > 2(1−p1)/(2−p1). Hence,

for any distribution with full support there will be delay if traders have a discount factor close

to 1.

Deadlines are missed only when the proposer has deadline 1 and finds it optimal to make

a proposal that the traders with the longest deadlines will reject. This will only occur when

there are not too many traders with the longest deadline. Clearly, the fraction of traders in the

market that will miss their deadline in the next period is thus bounded above by 12.5 per cent.

Namely, the probability that a random trader in the market will miss his deadline in the next

instant is bounded above by q1(1 − q1)/2 ≤ 0.125. However, the probability that a trader will

eventually miss his deadline may even be higher than that, because traders with high deadlines

may first delay trade and later miss their deadline.

Next we show that in any stationary subgame perfect equilibrium configuration the proposals

made are weakly decreasing in the deadline of the proposer. That is, the more patient a trader

is, the greedier his offers will be. Or phrased alternatively, the offers made by one particular

trader become more generous over time.

Proposition 14 In any stationary subgame perfect equilibrium configuration (with delay) the

equilibrium offers are weakly monotonically decreasing in deadline: If type j weakly prefers

offering δvi−k rather than δvi (for k > 0), then type j + 1 strictly prefers offering δvi−k rather

than δvi.
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We can use the preceding results to characterize the equilibria in more detail. There are

three possible types of stationary subgame perfect equilibrium configurations: (1) configura-

tions without delay, (2) configurations with delay but without deadlines being missed, and (3)

configurations with delay and deadlines being missed. The first type of subgame perfect equi-

librium configurations has all traders make the same offer of δ/2 which is immediately accepted.

Clearly, all traders make the same expected profit and there is no advantage of being more

patient. Such a configuration exists only if the fraction of traders with the shortest deadline is

(very) small, so that no trader has an incentive to ask for the whole pie.

The second and third type of configurations do exhibit an advantage of having a longer

deadline as expected payoffs are strictly increasing in deadline. When no deadlines are missed, a

proposer with deadline 1 will make an offer that all responders will accept, that is, he will offer

δvN−1. Hence, when a trader with deadline N is matched with a deadline 1 trader, there will

be immediate agreement. However, if a trader with deadline N is matched with any other type

of trader, there is a probability of at least one half that no agreement will result. Namely, if a

trader with deadline 2 makes an acceptable proposal to N , then it is implied that N will always

make a greedy offer of zero, which a trader with deadline 2 (or higher) will certainly reject. This

is so because otherwise traders with deadlines 1 and 2 would achieve the same payoff, which is

impossible from Proposition 13. In the third type of equilibrium configuration, a trader with

deadline N will even reject the proposal by a trader with deadline 1. Hence, whenever the trader

with deadline N is the responder (which occurs with probability one half), no agreement results.

These observations indicate that the amount of delay and unsuccessful bargaining is particularly

high when the inflow distribution consists mainly of traders with the highest deadline and a few

with the lowest deadline (but just enough to make it worthwhile for the patient traders to make

extremely greedy offers).

5 Related literature

Even though our paper is unique in considering non-stationary preferences, it is related to two

strands of literature. First, there is the literature that addresses the effects of a common deadline

in bilateral bargaining. Second, there is a large literature on decentralized trade by means of

matching and bargaining. We discuss these strands of literature, and their relation with this

paper, in turn.
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5.1 Deadlines in bargaining

This literature considers two person bargaining with a common deadline. This starts with the

finite horizon version of the Rubinstein bargaining model (St̊ahl, 1972), which shows that the

first mover advantage decreases with the number of bargaining rounds. Yildiz (2004) explains

why agreements are often reached close to the deadline when the deadline is fixed, but that

agreement is immediate in case of stochastic deadlines. Ma and Manove (1993) consider a

model of bargaining in which players can time their proposals, but in which the offers are

received with some random delay. They show that players start by delaying making proposals,

and then make proposals that are sometimes rejected. Agreements tend to be reached near the

deadline and sometimes no agreement is reached before the deadline expires. Ponsati (1995)

analyzes a bargaining game between two players over two possible outcomes. The players have

opposed preferences about the outcomes but the exact utility the players experience from the

outcomes is private information. Ponsati (1995) shows that many concessions are made exactly

at the deadline but not just before (but possibly much earlier). The deadline may also be

missed altogether. Fershtman and Seidmann (1993) assume that bargainers are committed not

to accept a proposal that is worse than a previously rejected proposal and show that agreements

will only be reached at the deadline.

5.2 Dynamic matching and bargaining

Our paper also relates to the large literature on dynamic matching and bargaining, starting

with Rubinstein and Wolinsky (1985) and summarized in Gale (2000). A dynamic matching

and bargaining game constitutes a natural model of decentralized trade when there are many

traders on both sides of the market. Many papers in this literature analyze whether the com-

petitive equilibrium outcome is obtained when frictions become negligible (e.g., Gale (1987)

and Satterthwaite and Shneyerov, 2007). A paper closely related to ours is Bose (1996). He

considers a dynamic matching and bargaining market in which traders have either a low or a

high discount factor. The basic idea that patient traders, when matched together, may prefer

to wait until matched with impatient traders, is similar. However, Bose’s (1996) model does

not allow for a long and a short side of the market. Whereas in our model preferences and

behavior of a particular trader are non-stationary, in Bose’s model they are stationary. Anwar

and Sákovics (2007) consider a model in which the good is perishable, which puts pressure on

the seller to agree to lower prices. They assume that with some given probability the good goes

bad at the end of each period and the seller disappears from the market. In case this probability

equals one, it is as if sellers have a deadline of 1 and buyers have no deadline. They show
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that inefficiencies arise because of excess demand (i.e., buyers have to queue to be matched) in

the limiting steady state. In our (symmetric) model all traders are matched and could reach

immediate agreement, but pairs of patient traders actually prefer and agree to delay and wait

for more profitable opportunities.

The role of heterogeneous time preferences played in Bose (1996) and our paper is similar

to the one of heterogeneous valuations. Samuelson (1992) considers buyers and sellers with

heterogeneous valuations and shows that two traders who could realize a positive surplus from

trading, may decide to break up negotiations and look for alternative partners, with which they

can make even more profitable agreements. The current paper has in common with Samuelson

(1992) that the disagreement point of a pair of traders is endogenously determined by the outside

options generated by the market, and that this is different from the one of the bargaining problem

studied in isolation. A difference is that in Samuelson (1992) the surplus to be divided depends

on the actual match and is not known, whereas the disagreement payoff for a particular trader

is constant over time.17 Jackson and Palfrey (1998) consider a market where traders with

heterogeneous valuations can return after disagreement, but without new traders flowing in.

They show that for a robust set of distributions of buyer and seller valuations the constrained

efficient trading rule is not attainable. The intuition for this is that trades in one period create

an externality on the distribution of traders who are rematched in the next period. In a similar

framework, Moreno and Wooders (2002) show that although trading patterns may be inefficient,

the welfare loss due to inefficient trading vanishes when frictions are small. Similar to Jackson

and Palfrey (1998), Damiano et al. (2005) consider a dynamic matching model where the

matching value function displays complementarities and where a fixed set of firms and workers

have a finite number of periods in order to form a match. They show that a small participation

cost in each round eliminates the sorting function of the market because almost all matches are

formed in the first round.

6 Conclusions

We have shown that, in the context of a dynamic matching and bargaining market, heteroge-

neous deadlines can be successfully incorporated to model situations where traders have differ-

ent degrees of time pressure. Our model captures that many real-life bargaining situations are

framed in terms of deadlines (“When do I need to have an agreement?”) rather than in terms

17Mortensen and Wright (2002), Satterthwaite and Shneyerov (2007), and Shneyerov and Wong (2010b) also
allow for distributions of buyer’s valuations and seller’s costs in a dynamic matching and bargaining model, but
their main focus is on the convergence of equilibria of such model to Walrasian equilibria as frictions (such as
transaction costs) disappear.
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of discounting (“How much am I willing to sacrifice to have an agreement today rather than

tomorrow?”). Stationary equilibria are shown to exist, for any initial distribution of trader’s

deadlines.

When proposers have perfect information about the responder’s deadline, the steady state

equilibrium has the intuitive property that the more patient traders receive higher expected

payoffs. This may induce these traders to delay agreement when matched with similar traders.

In an equilibrium with delay a trader with a long deadline may initially reject proposals, but

later on he will accept the same or worse offers, because his outside option deteriorates over

time. This a realistic feature of bargaining, for example in the real estate market (see, e.g.,

Merlo and Ortalo-Magné, 2004). Compared to the initial inflow distribution of deadlines, in an

equilibrium with delay the steady state distribution is shifted towards longer deadlines. This

negatively affects all traders, but in particular those who are very much pressed by time. A

directed mechanism that matches traders with the same deadline would remove any delay and,

moreover, would guarantee all traders the same payoff. The availability of such a mechanism

would attract, in first instance, the exploited traders with short deadlines. An unravelling

argument then shows that in fact all trade will take place in this directed matching market. We

refer the reader to our previous working paper version (Hurkens and Vulkan, 2006) for details.

Delay may occur exactly because traders are willing to wait until matched with a trader

with a short deadline. One may thus have conjectured that delay cannot occur when deadlines

are private information. However, when proposers do not observe the deadline of the responder,

equilibria without delay only exist when the probability of having deadline 1 is small. In this case

all traders obtain the same payoff. When the probability of having deadline 1 is relatively high,

many proposers are willing to take a chance and make very greedy offers and the equilibrium

does exhibit delay. In fact, deadlines are missed when even proposers with deadline 1 make such

greedy offers (but are matched with more patient responders).

It should be mentioned that although our model deals with buyers and sellers, it can also

be applied to other settings of two-sided matching markets, such as workers and firms, authors

and co-authors, or men and women.18 In these situations one usually assumes that the surplus

is not fixed but depends on the characteristics of the partners. The main subject of study is

then to determine who matches up with whom. For example, will there be positive assortive

matching whenever this is efficient? Clearly, our model can and needs to be enriched in order

to deal with these type of questions. It seems plausible that the introduction of heterogeneous

deadlines will affect these matching models in similar ways. Delay may occur and inefficient

18See, e.g., Shimer and Smith (2000) and Damiano et al. (2005).
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matches may form whenever the partners are pressed by time. However, a full analysis of this

situation is beyond the scope of the present paper and is left for future research.

Appendix

Proof of Proposition 2

Let Z = {z ∈ ℜN
+ :

∑
i zi ≥ 1 and zi ≤ N + 1− i} and let W = {w ∈ ℜN

+ : w1 ≤ w2 ≤ . . . ≤

wN ≤ 1}. Let M denote the set of all symmetric N × N matrices with entries in the interval

[0, 1]. Consider the following correspondence G : Z ×W → Z ×W ×M:

G(z, w) = {(z, w,A) : Aij = 0 if δ(wi−1 + wj−1) > 1 and

Aij = 1 if δ(wi−1 + wj−1) < 1}

and the following mapping H : Z ×W ×M→ Z ×W :

H(z, w,A) = (z̃, w̃)

where

z̃N = pN , z̃i = pi +
zi+1∑
k zk

(

N∑
j=1

zj(1−Ai+1j)) for i < N

and

w̃i =
1

2
δwi−1 +

1

2
∑

k zk
(

N∑
j=1

zj(max{δwi−1, 1− δwj−1}).

Note that z̃i ≤ pi + zi+1 ≤ 1 + N + 1 − (i + 1) = N + 1 − i and that w̃i ≤ w̃i+1 ≤ 1 when

wi−1 ≤ wi so that H really maps into Z ×W .

We now combine G and H to construct a correspondence F : Z ×W → Z ×W as follows:

F (z, w) = {H(z, w,A) : (z, w,A) ∈ G(z, w)}.

F is an upper semi-continuous correspondence from a non-empty, compact, convex set Z ×W

into itself such that for all (z, w) ∈ Z ×W , the set F (z, w) is convex and non-empty. Convexity

of F (z, w) is of course immediate in the case of a singleton set. Suppose (z̃, w̃) = H(z, w,A) and

(z̃′, w̃′) = H(z, w,A′) are two different elements of F (z, w) and let α ∈ [0, 1]. By the definition

it follows immediately that w̃ = w̃′ = αw̃ + (1− α)w̃′. On the other hand,

αz̃i + (1− α)z̃′i = pi +
zi+1∑
k zk

∑
j

zj(1− (αAi+1j + (1− α)A′
i+1,j))

 .
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We conclude that αH(z, w,A) + (1− α)H(z, w,A′) = H(z, w, αA+ (1− α)A′) ∈ G(z, w). Then

applying Kakutani’s fixed point theorem delivers the required result.

Proof of Proposition 3

We first show that wi is increasing in i. Obviously, 0 = w0 < w1. Assume that w0 < w1 <

. . . < wi for some i ≥ 1. It is immediate that then wi+1 > wi because (by the induction step)

wi > wi−1 and max{δwi, 1− δwj−1} ≥ max{δwi−1, 1− δwj−1} for all j.

To show that wi is concave in i, let J = {j : δwi > 1 − δwj−1} and J ′ = {j : δwi+1 >

1− δwj−1 ≥ δwi}. We then have

2(wi+2 − wi+1) = δ(wi+1 − wi) +
∑
j∈J

qjδ(wi+1 − wi) +
∑
j∈J ′

qj(δwi+1 − (1− δwj−1))

≤ δ(wi+1 − wi) +
∑
j

qjδ(wi+1 − wi)

= 2δ(wi+1 − wi).

Proof of Corollary 4

The first statement follows immediately from the fact that traders with deadline 1 face an

outside option of w0 = 0 in case of disagreement, together with the observation that δwj−1 < 1,

so that 1− δwj−1 > w0 and Ai1 = 1.

(i) Let Aij < 1. Then δ(vi−1 + vj−1) ≥ 1. Concavity implies that δ(vi + vj−2) > δ(vi−1 +

vj−1) ≥ 1), so that Ai+1,j−1 = 0.

(ii) Let Ai+1,j−1 > 0. Then by the previous result it follows that Aij = 1.

Proof of Proposition 5

Suppose there exists an equilibrium without delay when the inflow distribution is p. Let p̄1

be uniquely defined by p̄1(δ/2)+(1− p̄1)(δ/2)
N = 1−WA(p, δ). Let p̄ denote the extreme inflow

distribution with fraction p̄1 of traders with deadline 1 and fraction 1− p̄1 traders with deadline

N . By definition of p̄1, this alternative inflow distribution satisfies WA(p̄, δ) = WA(p, δ) and

thus must result in the same payoffs for all types as the original inflow distribution. On the other

hand, when there are just two types and there is no delay, payoffs must satisfy the following

equalities:

v1 = p̄(1/2) + (1− p̄)(1/2)(1− δvN−1) =
1

2
(1− (1− p̄)δvN−1)

vN = (1− p̄)(1/2) + p̄(
1

2
δvN−1 +

1

2
) =

1

2
(1 + p̄δvN−1).

Using that no delay implies that δvN−1 ≤ 1/2, it follows immediately that v1 > 1/4, vN−1 < 3/4,
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and vN < 2v1.

Proof of Proposition 6

There is no delay if and only if 2δvN−1 ≤ 1, where vN−1 is as defined in Proposition 5.

Proof of Corollary 8

(i) Let p′ first-order stochastically dominate p. Then WA(p, δ) < WA(p′, δ). Therefore

1

2δ
≥

1− (12δ)
N−1

2WA(p, δ)
≥

1− (12δ)
N−1

2WA(p′, δ)
.

From Proposition 5 it follows that vj(p, δ)/vj(p
′, δ) = WA(p′, δ)/WA(p, δ) > 1.

(ii) Let p′ second-order stochastically dominate p. Then WA(p, δ) < WA(p′, δ) and the state-

ment follows from Propositions 5 and 6.

(iii) Let L(δ) = δ − (12)
N−1δN −

∑N
i=1 pi(1 − (12δ)

i). We will show that L(δ) is increasing for

δ < 1 which proves the claim as Proposition 6 states that there exists an equilibrium

without delay if and only if L(δ) ≤ 0. Observe that for all natural numbers N and any

δ ∈ [0, 1)

2N−1 −NδN−1 > 2N−1 −N ≥ 0

so that

L′(δ) = 1− NδN−1

2N−1
+

N∑
i=1

pi
iδi−1

2i
> 0.

Note that if v1(p, δ
′) ≤ v1(p, δ), then it would follow from (2) that vi(p, δ

′) < vi(p, δ) for

all i > 1. This is impossible because total surplus is equal to 1 in both cases. Hence, we

conclude that v1(p, δ
′) > v1(p, δ). In a similar fashion it can be shown that vN (p, δ′) <

vN (p, δ).

(iv) Suppose there is delay. Then wN > wN−1 ≥ δwN−1 ≥ 1/2. Hence, every new trader

entering the market (before learning his deadline) expects to obtain strictly more than

1/2. This is not sustainable.

Proof of Proposition 11

Let Z = {z ∈ ℜN
+ :

∑
i zi ≥ 1 and zi ≤ N + 1− i} and let W = {w ∈ ℜN

+ : w1 ≤ w2 ≤ . . . ≤

wN ≤ 1}. LetM denote the set of all N ×N matrices with entries in the interval [0, 1] whose
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row sums are equal to 1. For any w ∈ W , let X(w) = {δw0, δw1, . . . , δwN−1} denote the set of

(potentially optimal) offers. (Here w0 = 0.) The entry Mij of the matrix M is to be interpreted

as the probability with which a proposer with deadline i offers δwj−1.

Consider the following correspondence G : Z ×W ⇒ Z ×W ×M:

G(z, w) = {(z, w,M) : Mij = 0 if δwj−1 ̸∈ arg max
x∈X(w)

{(1− x)
∑

j:δwj−1≤x

zj + δwi−1

∑
j:δwj−1>x

zj}.

The correspondence G adds (mixed) strategies of proposers that are myopically optimal. That

is, they are optimal given the distribution of deadlines implied by z, and under the further

assumptions that a responder with deadline j accepts proposal x if and only if x ≥ δwj−1 and

that rejected proposals yield proposer with deadline i an expected payoff equal to wi−1 one

period later.

We furthermore define the following mapping H : Z ×W ×M→ Z ×W :

H(z, w,M) = (z̃, w̃)

where z̃N = pN and for i < N ,

z̃i = pi +
zi+1

2
∑

j zj

∑
k

Mi+1 k

∑
j:δwj−1>δwk−1

zj

+

∑
j

zj ∑
k:δvi>δwk−1

Mjk

 ,

and, for all i,

w̃i =
1

2
∑

j zj

∑
k

Mik

(1− δwk−1)
∑

j:δvj−1≤δwk−1

zj + δwi−1

∑
j:δvj−1>δwk−1

zj


+

1

2
∑

j zj

∑
j

zj

[∑
k

max{δvi−1, δwk−1}Mjk

] .

The mapping H recalculates the mass of traders with different deadlines from the proposal

strategies given by M (and given the responders’ strategies described before) and updates the

expected payoff of traders. Note that z̃i ≤ pi + zi+1 ≤ 1 +N + 1− (i+ 1) = N + 1− i and that

w̃i ≤ w̃i+1 ≤ 1 when wi−1 ≤ wi so that H really maps into Z ×W .

We now combine G and H to construct a correspondence F : Z ×W ⇒ Z ×W as follows:

F (z, w) = {H(z, w,M) : (z, w,M) ∈ G(z, w)}.

F is an upper semi-continuous correspondence from a non-empty, compact, convex set Z ×W
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into itself such that for all (z, w) ∈ Z ×W , the set F (z, w) is convex and non-empty. Convexity

of F (z, w) is of course immediate in the case of a singleton set. Suppose (z̃, w̃) = H(z, w,M) and

(z̃′, w̃′) = H(z, w,M ′) are two different elements of F (z, w) and let α ∈ [0, 1]. By the definition

it follows immediately that (z, w, αM + (1− α)M ′) ∈ G(z, w). Because of the linearity in M , it

is straightforward that

α(z̃, w̃) + (1− α)(z̃′, w̃′) = H(z, w, αM + (1− α)M ′).

Hence, α(z̃, w̃) + (1−α)(z̃′, w̃′) ∈ F (z, w) and applying Kakutani’s fixed point theorem delivers

the required result.

Proof of Proposition 12

First, assume the inequality is satisfied and consider the following strategies. All types offer

as a proposer δ/2 to the opponent and keep 1− δ/2 for themselves. Types with deadlines i > 1

accept any proposal that yields them at least δ/2. Type 1 accepts any proposal that yields him

a nonnegative payoff. It is clear that these strategies yield all traders an expected payoff of 1/2.

Also, given the proposer’s strategies, it is optimal to accept any proposal equal to or above δ/2

and to reject (in the case of deadlines higher than 1) any lower proposals. For a trader with

deadline 1 it is obviously optimal to accept any nonnegative offer. The only remaining question

is whether some trader could do better by making a different proposal. Given the responder’s

strategies, the only alternative strategy that could possibly give a higher payoff would be to offer

0 (in the hope of being matched with a trader whose deadline is about to expire). Conditional

on being a proposer (with deadline i > 1) following the outlined strategy yields 1−δ/2. Offering

0 will only be accepted by traders with deadline equal to 1, so this yields an expected payoff of

p1 × 1 + (1− p1)× δvi−1 = δ/2 + p1(1− δ/2). The equilibrium condition is thus

1− δ/2 ≥ δ/2 + p1(1− δ/2)

or, equivalently,

p1 ≤ 2(1− δ)/(2− δ).

Second, suppose the inequality is not satisfied and suppose there exists an equilibrium with

vi = v for all i. Clearly, v ≤ 1/2. In such equilibrium offers above δv must be accepted and

offers below must be rejected (except for traders with deadline 1 who will accept any nonnegative

offer). Therefore, the only offers that can possibly be made in equilibrium are δv and 0. If 0

is never offered then it follows that v = 1/2 but then traders with high deadline are better off
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offering 0, as we have seen before. Hence, some traders must propose 0 with positive probability.

But that implies that vi < vi+1 for all i as a trader with deadline i + 1 can imitate a trader

with deadline i but has an extra chance to get a positive payoff in the event of being proposed

i times an offer of zero.

Proof of Proposition 13

Traders with deadline j + 1 can always use the same strategy that traders with deadline j

use. Hence, vj+1 ≥ vj . From the previous proposition we know that not all traders receive the

same payoff. Hence, for some deadline k we have v1 ≤ . . . ≤ vk < vk+1 ≤ . . . ≤ vN . This implies

that a trader with deadline k cannot imitate the trader with deadline k + 1. Hence, there must

be a positive probability that a trader with deadline k + 1 will still be in the market when his

deadline has reduced to 1. This in turn implies that for any trader with deadline j < k + 1

there is a positive probability that he will remain in the market for j periods. In particular,

this is the case for a trader with deadline 2. Clearly, this means that delay occurs with positive

probability.

First we show that v1 < v2. This is obvious if the zero offer is made with positive probability,

because then a trader with deadline 2 could just mimic the behavior of a trader with deadline

1, except for the case where a zero offer is received, which should be rejected. Similarly, if the

trader with deadline 1 makes an offer in equilibrium which is rejected with positive probability,

then the trader with deadline 2 can mimic a trader with deadline 1. In case of being chosen as

a proposer and the proposal being rejected, the trader with deadline 2 will have another chance

to obtain a positive payoff. Hence, also in this case we must have v1 < v2. So let us assume that

the zero offer is not made and that traders with deadline 1 make a proposal that is accepted

for sure. Then the lowest offer that can be made in equilibrium equals δv1, which a trader with

deadline 2 will accept with probability 1 in equilibrium. We know that a trader with deadline

2 will sometimes delay in equilibrium. This can only happen when he makes a proposal that

is rejected by some trader(s), let us say, δvm−1 < δvN−1. We can only have that v1 = v2 if in

fact trader 2, as a proposer, is indifferent between making the offers δvm−1 and δvN−1. But if

this is the case, trader k can mimic the behavior of a trader with deadline k + 1 as long as the

remaining deadline is strictly above 1, and make the proposal that is certainly accepted when

the deadline has reduced to 1. In this way trader k can obtain the same payoff as trader k + 1,

which is a contradiction. Hence, we have established that v1 < v2.

It follows immediately that for all traders with j < k that vj < vj+1. Namely, trader j+1 can

mimic trader j as long as the remaining deadline is above 2, and use the equilibrium strategy of

a trader with deadline 2 when the deadline has reduced to 2. In this way trader j+1 guarantees
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a payoff strictly higher than what trader j can get.

We thus have either that (i) v1 < v2 < ... < vN or (ii) there exists a deadline j > k such that

v1 < ... < vj = vj+1 ≤ ... ≤ vN .

Suppose we are in case (ii). As argued before, it must be the case that there is a positive

probability of delay for all traders with deadline i such that 1 < i < j + 1. Because the trader

with deadline j + 1 could imitate the trader with deadline j, but cannot do better than him,

the zero offer is never made. (Namely, if the zero offer is made with positive probability, then

he could do strictly better by not accepting the zero offer when his deadline has reduced to

2.) Consider now the possibility of trader j + 1 imitating trader j for one period. If a deal is

concluded, he would obtain the same payoff as the trader with deadline j in that circumstance.

On the other hand, if there is delay (which happens with positive probability, then his future

expected payoff is vj > vj−1. Hence, trader j + 1 can guarantee a strictly higher payoff than j

and case (ii) cannot occur. We conclude that in any equilibrium v1 < ... < vN .

Finally, it is straightforward to verify that deadlines are missed in equilibrium when, for

example, p = (0.99, 0.01). In this case every proposer will offer zero to the responder, which is

only accepted by traders with deadline 1. Hence, with positive probability deadlines are missed.

Proof of Proposition 14. We already know that in an equilibrium without delay all traders

make the same offer of δ/2. Consider an SSPE configuration without delay such that vj−1 < vj

for all j. Denote Qm = q1 + ...+ qm for any 1 ≤ m ≤ N . Then Qm < Qm+1 and QN = 1.

(1− δvi)Qi+1 + δvj−1(1−Qi+1) ≤ (1− δvi−k)Qi−k+1 + δvj−1(1−Qi−k+1)

⇔ Qi+1(1− δvi − δvj−1) ≤ Qi−k+1(1− δvi−k − δvj−1)

⇒ Qi+1(1− δvi − δvj) < Qi−k+1(1− δvi−k − δvj)

⇔ (1− δvi)Qi+1 + δvj(1−Qi−k+1) < (1− δvi−k)Qi−k+1 + δvj(1−Qi−k+1)

The first inequality states that a trader with deadline j weakly prefers to offer δvi−k rather than

δvi. The last inequality says that a trader with deadline j + 1 strictly prefers to offer δvi−k

rather than δvi.
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